

4508 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

REJ03B0148-0102 Rev.1.02 2006.12.22

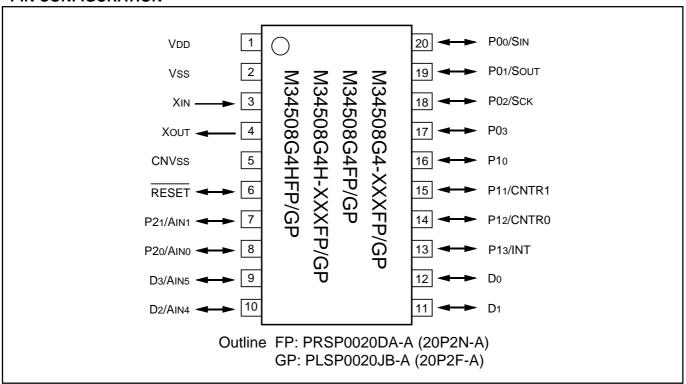
DESCRIPTION

The 4508 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with two 8-bit timers (each timer has two reload registers), interrupts, 10-bit A/D converter, Serial interface and oscillation circuit switch function.

FEATURES

- Timers
- ●Interrupt 5 sources

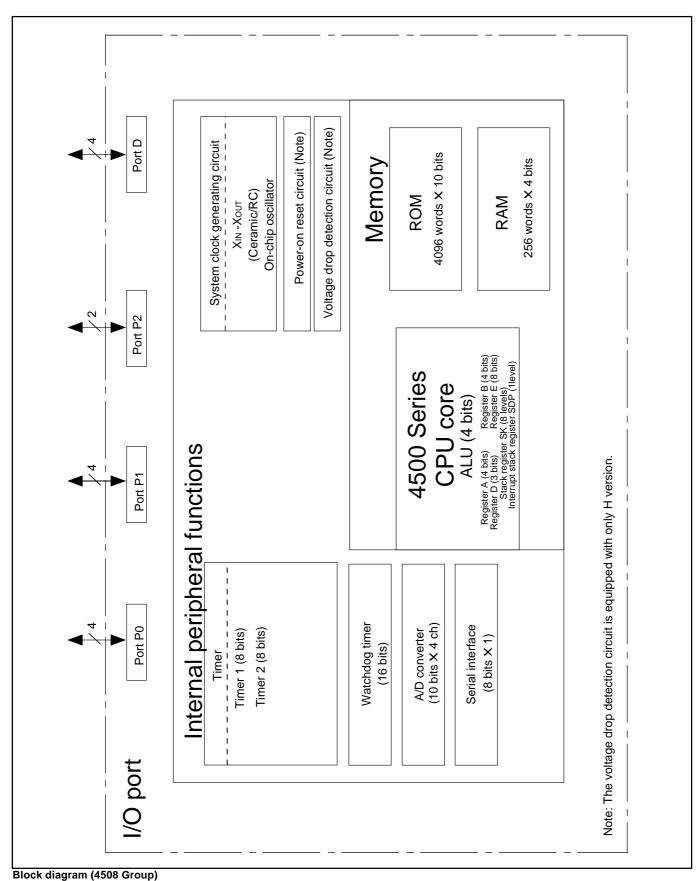
- Power-on reset circuit (only for H version)
- Watchdog timer
- Clock generating circuit (on-chip oscillator/ceramic resonator/RC oscillation)
- ●LED drive directly enabled (port D)


APPLICATION

Electrical household appliance, consumer electronic products, office automation equipment, etc.

Part number	ROM (PROM) size	, ,		ROM type	
	(X 10 bits)	(X 4 bits)	Package	1.5	
M34508G4FP (Note)	4096 words	256 words	PRSP0020DA-A	QzROM	
M34508G4-XXXFP	4096 words	256 words	PRSP0020DA-A	QzROM	
M34508G4HFP (Note)	4096 words	256 words	PRSP0020DA-A	QzROM	
M34508G4H-XXXFP	4096 words	256 words	PRSP0020DA-A	QzROM	
M34508G4GP * (Note)	4096 words	256 words	PLSP0020JB-A	QzROM	
M34508G4-XXXGP *	4096 words	256 words	PLSP0020JB-A	QzROM	
M34508G4HGP * (Note)	4096 words	256 words	PLSP0020JB-A	QzROM	
M34508G4H-XXXGP *	4096 words	256 words	PLSP0020JB-A	QzROM	

Note: Shipped in blank.


PIN CONFIGURATION

Pin configuration (top view) (4508 Group)

^{*:} Under development

PERFORMANCE OVERVIEW

	Paramete	er	Function				
Number of		M34508G4	131				
basic instructi	ons	M34508G4H	132				
Minimum insti	ruction exe	cution time	0.5 μs (at 6 MHz oscillation frequency, in through mode)				
Memory sizes	ROM		4096 words X 10 bits				
	RAM		256 words X 4 bits				
Input/Output ports	D0-D3	I/O	Four independent I/O ports. Input is examined by skip decision. Ports D2 and D3 are equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software. Ports D2 and D3 are also used as AIN4, and AIN5, respectively.				
	P00-P03	I/O	4-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both functions and output structure can be switched by software. Ports P00, P01 and P02 are also used as SIN, SOUT and SCK, respectively.				
	P10-P13	I/O	4-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both functions and output structure can be switched by software. Ports P11, P12 and P13 are also used as CNTR1, CNTR0 and INT, respectively.				
	P20, P21	I/O	2-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both functions and output structure can be switched by software. Ports P20 and P21 are also used as AINO and AIN1, respectively.				
	CNTR0, CNTR1	Timer I/O	wo independent I/O; CNTR1 and CNTR0 pins are also used as ports P11 and P12, respectively.				
	INT	Interrupt input	1-bit input; INT pin is also used as port P13.				
	SIN, SOUT, SCK	Serial interface input/output	Three independent I/O; SIN, SOUT, and SCK are also used as ports P00, P01, and P02, respectively.				
	AIN0, AIN1, AIN4, AIN5	Analog input	Four independent input; AIN0, AIN1, AIN4, AIN5 are also used as P20, P21, D2 and D3, respectively.				
Timers	Timer 1		8-bit programmable timer/event counter with two reload registers and PWM output function.				
	Timer 2		8-bit programmable timer/event counter with two reload registers and PWM output function.				
	Watchdog	timer function	16-bit timer (fixed dividing frequency) (for watchdog)				
A/D			10-bit wide, This is equipped with an 8-bit comparator function.				
converter	Analog in	put	4 channel (AINO, AIN1, AIN4, AIN5 pins)				
Serial interfac	e		8-bit X 1				
Voltage drop	Reset occ	currence	Typ. 2.6 V (Ta = 25 °C)				
detection circuit (Note)	Reset rele	ease	Typ. 2.7 V (Ta = 25 °C)				
Power-on res	et circuit (N	Note)	Built-in type				
Interrupt	Sources	,	5 (one for external, two for timer, one for A/D, one for Serial interface)				
	Nesting		1 level				
Subroutine ne	·		8 levels				
Device structi	ure		CMOS silicon gate				
Package			FP: 20-pin plastic molded SOP (PRSP0020DA-A)				
0			GP: 20-pin plastic molded SSOP (PLSP0020JB-A)				
Operating ten	•	ange	-20 °C to 85 °C				
Supply voltag	1		1.8 V to 5.5 V (It depends on operation source clock, oscillation frequency and operating mode.)				
Power dissipation	Active mo		2.2 mA (Ta = 25° C, VDD = 5.0 V, $f(XIN) = 6.0$ MHz, $f(STCK) = f(XIN)/1$)				
(typical value)	RAM bacl	k-up mode	0.1 μ A (Ta = 25°C, VDD = 5.0 V, output transistors in the cut-off state)				
Note: These circ	uits are equ	ipped with only the	H version.				

PIN DESCRIPTION

Pin	Name	Input/Output	Function
VDD	Power supply	_	Connected to a plus power supply.
Vss	Ground	_	Connected to a 0 V power supply.
CNVss	CNVss	_	Connect CNVss to Vss and apply "L" (0V) to CNVss certainly.
RESET	Reset input/output	I/O	An N-channel open-drain I/O pin for a system reset. When the SRST instruction, watchdog timer, the voltage drop detection circuit (only for H version) or the built-in power-on reset (only for H version) causes the system to be reset, the RESET pin outputs "L" level.
XIN	System clock input	Input	I/O pins of the main clock generating circuit. When using a ceramic resonator, connect it between pins XIN and XOUT. A feedback resistor is built-in between them. When using the RC
Xout	System clock output	Output	oscillation, connect a resistor and a capacitor to XIN, and leave XOUT pin open.
D0-D3	I/O port D Input is examined by skip decision.	I/O	Each pin of port D has an independent 1-bit wide I/O function. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Ports D2 and D3 are equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software. Ports D2 and D3 are also used as AIN4 and AIN5, respectively.
P00-P03	I/O port P0	I/O	Port P0 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P0 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P00, P01 and P02 are also used as SIN, SOUT and SCK, respectively.
P10-P13	I/O port P1	I/O	Port P1 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P1 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P11, P12 and P13 are also used as CNTR1, CNTR0 and INT, respectively.
P20, P21	I/O port P2	I/O	Port P2 serves as a 2-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P2 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P20 and P21 are also used as AINO and AIN1, respectively.
CNTR0	Timer input/output	I/O	CNTR0 pin has the function to input the clock for the timer 2 event counter, and to output the PWM signal generated by timer 1. This pin is also used as port P12.
CNTR1	Timer input/output	I/O	CNTR1 pin has the function to input the clock for the timer 1 event counter, and to output the PWM signal generated by timer 2. This pin is also used as port P11.
INT	Interrupt input	Input	INT pin accepts external interrupts. It has the key-on wakeup function which can be switched by software. This pin is also used as port P13.
AINO, AIN1, AIN4, AIN5,	Analog input	Input	A/D converter analog input pins. AIN0, AIN1, AIN4, AIN5 are also used as ports P20, P21, D2 and D3, respectively.
Sck	Serial interface clock I/O	I/O	Serial interface data transfer synchronous clock I/O pin. Sck pin is also used as port P02.
Sout	Serial interface data output	Output	Serial interface data output pin. Sout pin is also used as port P01.
SIN	Serial interface data input	Input	Serial interface data input pin. SIN pin is also used as port P0o.

MULTIFUNCTION

Pin	Multifunction	Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
P00	SIN	SIN	P00	P20	AIN0	AIN0	P20
P01	Sout	Sout	P01	P21	AIN1	AIN1	P21
P02	Sck	Sck	P02	D2	AIN4	AIN4	D2
P11	CNTR1	CNTR1	P11	D3	AIN5	AIN5	D3
P12	CNTR0	CNTR0	P12				
P13	INT	INT	P13				

Notes 1: Pins except above have just single function.

- 2: The input/output of P0o can be used even when SIN is used. Be careful when using inputs of both SIN and P0o since the input threshold value of SIN pin is different from that of port P0o.
- 3: The input of P01 can be used even when SouT is used.
- 4: The input of P02 can be used even when SCK is used. Be careful when using inputs of both SCK and P02 since the input threshold value of SCK pin is different from that of port P02.
- 5: The input of P11 can be used even when CNTR1 (output) is selected.

 The input/output of P11 can be used even when CNTR1 (input) is selected. Be careful when using inputs of both CNTR1 and P11 since the input threshold value of CNTR1 pin is different from that of port P11.
- 6: The input of P12 can be used even when CNTR0 (output) is selected.

 The input/output of P12 can be used even when CNTR0 (input) is selected. Be careful when using inputs of both CNTR0 and P12 since the input threshold value of CNTR0 pin is different from that of port P12.
- 7: The input/output of P13 can be used even when INT is used. Be careful when using inputs of both INT and P13 since the input threshold value of INT pin is different from that of port P13.
- 8: The input/output of P20, P21, D2, D3 can be used even when AIN0, AIN1, AIN4, AIN5 are used.

PORT FUNCTION

Port	Pin	Input Output	Output structure	I/O unit	Control instructions	Control registers	Remark
Port D	D0, D1	I/O (4)	N-channel open-drain/ CMOS	1	SD, RD SZD, CLD	FR3	Programmable output structure selection function
	D2/AIN4 D3/AIN5					FR3, PU2 K2 Q1	Programmable pull-up function Programmable key-on wakeup function Programmable output structure selection function
Port P0	P00/SIN, P01/SOUT, P02/SCK, P03	I/O (4)	N-channel open-drain/ CMOS	4	OP0A IAP0	FR0, PU0 K0 J1	Programmable pull-up function Programmable key-on wakeup function Programmable output structure selection function
Port P1	P10, P11/CNTR1, P12/CNT0, P13/INT	I/O (4)	N-channel open-drain/ CMOS	4	OP1A IAP1	FR1, PU1 K1, L1, I1 W1, W2 W5, W6	Programmable pull-up function Programmable key-on wakeup function Programmable output structure selection function
Port P2	P20/AIN0 P21/AIN1	I/O (2)	N-channel open-drain/ CMOS	2	OP2A IAP2	FR2, PU2 Q1 K2	Programmable pull-up function Programmable key-on wakeup function Programmable output structure selection function

DEFINITION OF CLOCK AND CYCLE

Operation source clock

The operation source clock is the source clock to operate this product. In this product, the following clocks are used.

- Clock (f(XIN)) by the external ceramic resonator
- Clock (f(XIN)) by the external RC oscillation
- Clock (f(XIN)) by the external input
- Clock (f(RING)) of the on-chip oscillator which is the internal oscillator.

System clock

The system clock is the basic clock for controlling this product. The system clock is selected by the register MR and register RG.

Instruction clock

The instruction clock is a signal derived by dividing the system clock by 3. The one instruction clock cycle generates the one machine cycle.

Machine cycle

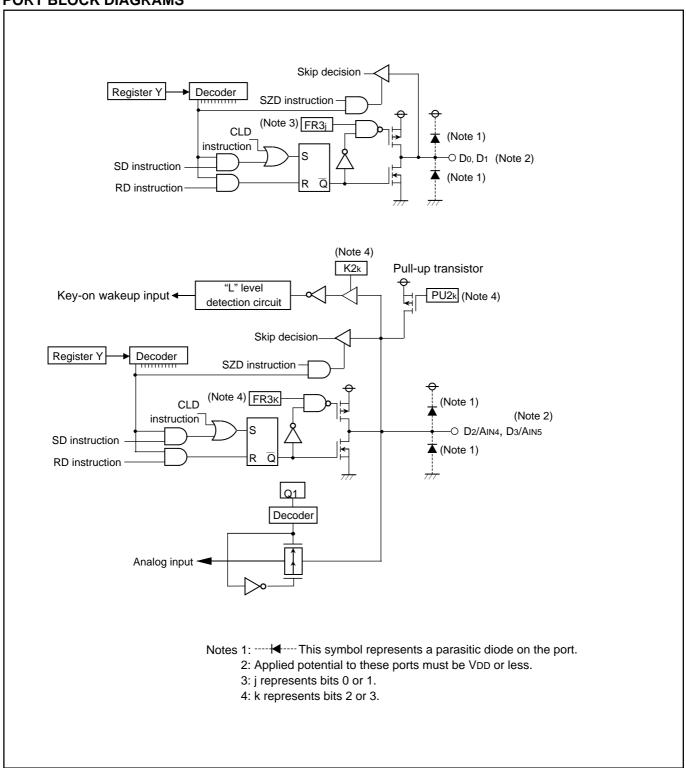
The machine cycle is the standard cycle required to execute the instruction.

Table Selection of system clock

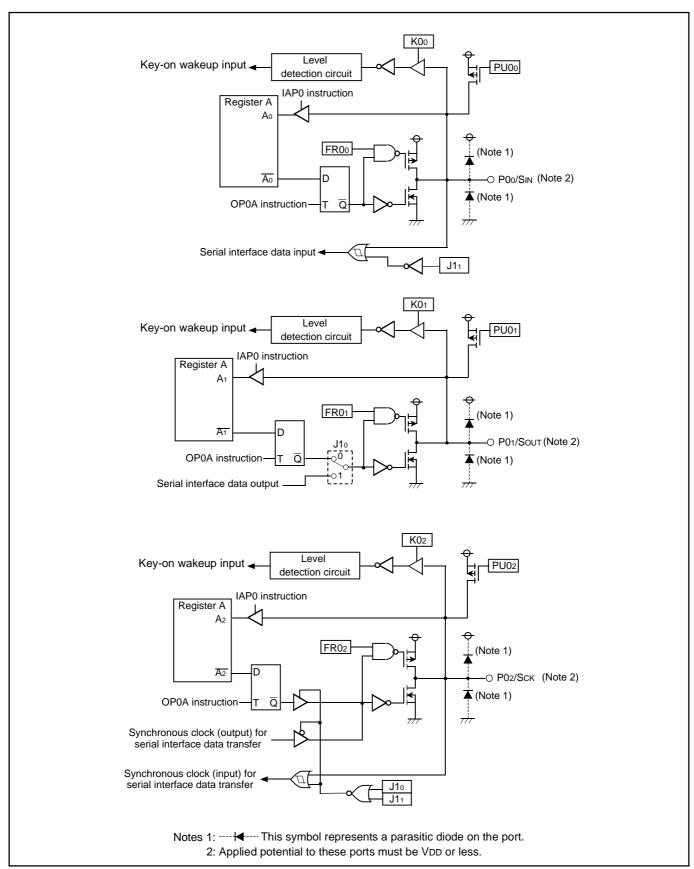
	Register MR, RG			System clock	Operation mode	
MRз	MR2	MR1	MR ₀	RG0		
1	1	1	1	0	f(STCK) = f(RING)/8	Internal frequency divided by 8 mode
1	0	-	1	0	f(STCK) = f(RING)/4	Internal frequency divided by 4 mode
0	1	_	1	0	f(STCK) = f(RING)/2	Internal frequency divided by 2 mode
0	0	_	1	0	f(STCK) = f(RING)	Internal frequency through mode
1	1	0	0	_	f(STCK) = f(XIN)/8	High-speed frequency divided by 8 mode
1	0	0	0	-	f(STCK) = f(XIN)/4	High-speed frequency divided by 4 mode
0	1	0	0	_	f(STCK) = f(XIN)/2	High-speed frequency divided by 2 mode
0	0	0	0	_	f(STCK) = f(XIN)	High-speed through mode

Note: The internal frequency divided by 8 is selected after system is released from reset.

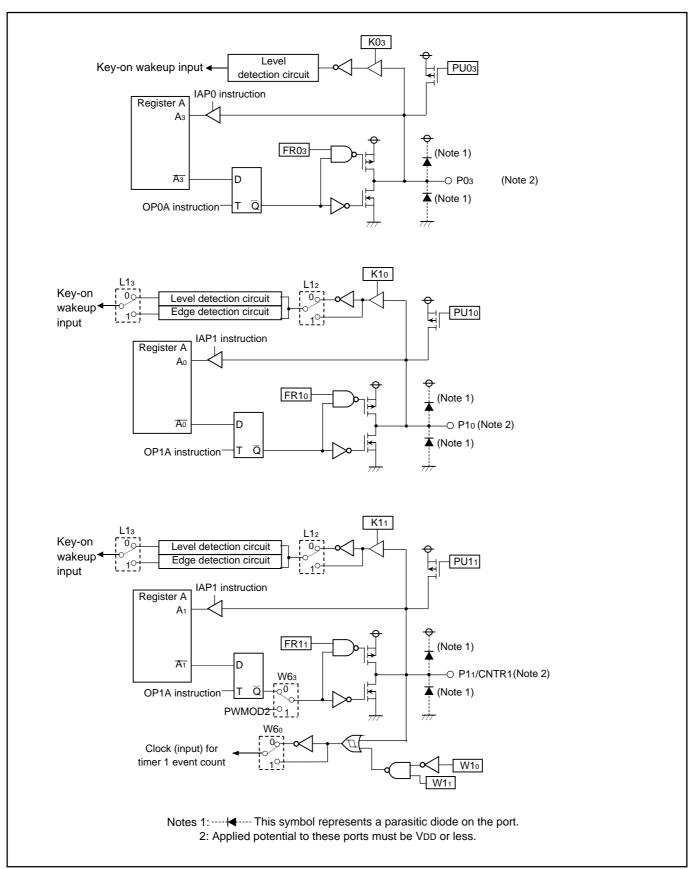
CONNECTIONS OF UNUSED PINS

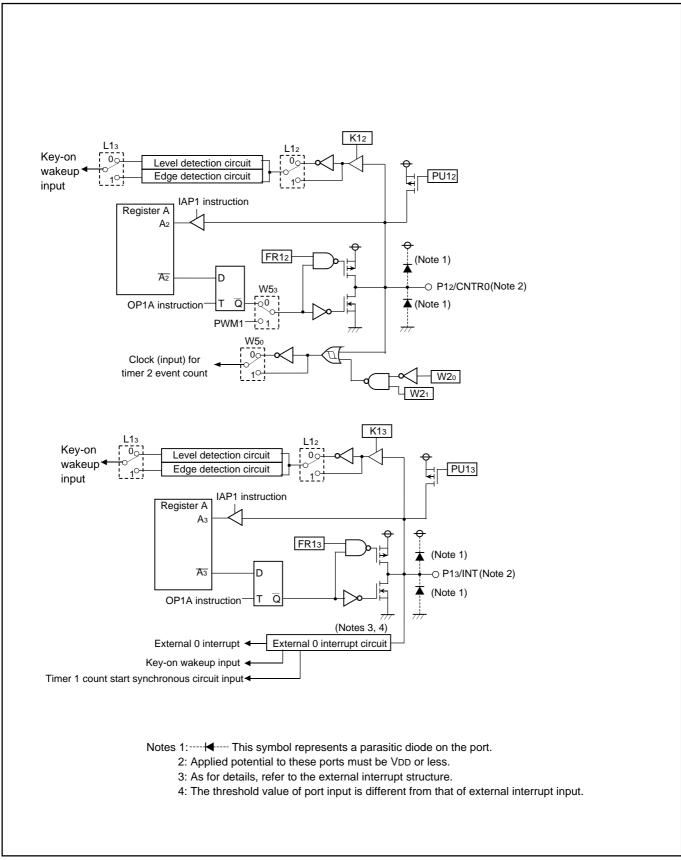

Dia		
Pin	Connection	Usage condition
XIN	Connect to Vss.	RC oscillation circuit is not selected. (CRCK instruction is not executed.)
XOUT	Open.	
D0, D1	Open.	Ni shannal anan drain is calcuted for the output structure (FD2s, FD2t, "0")
Do/Any Do/Anys	Connect to Vss.	N-channel open-drain is selected for the output structure (FR30, FR31 = "0").
D2/AIN4, D3/AIN5	Open. Connect to Vss.	The key-on wakeup function is invalid (K22, K23 = "0").
	Connect to vss.	N-channel open-drain is selected for the output structure (FR32, FR33 = "0"). Pull-up transistor is OFF (PU22, PU23 = "0").
		The key-on wakeup function is invalid (K22, K23 = "0").
P00/SIN	Open.	Sin pin is not selected (J11 = "0").
F00/3IN	Ореп.	The key-on wakeup function is invalid (K00 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR00 = "0").
	Connect to vas.	Pull-up transistor is OFF (PU00 = "0").
		The key-on wakeup function is invalid (K00 = "0").
P01/Sout	Open.	The key-on wakeup function is invalid (K01 = "0").
F01/3001	Connect to Vss.	N-channel open-drain is selected for the output structure (FR01 = "0").
	Connect to vas.	Pull-up transistor is OFF (PU01 = "0").
		The key-on wakeup function is invalid (K01 = "0").
P02/SCK	Open.	SCK pin is not selected (J11J10 = "00").
1 02/3CK	Ороп.	The key-on wakeup function is invalid (K02 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR02 = "0").
	Connect to voc.	Pull-up transistor is OFF (PU02 = "0").
		The key-on wakeup function is invalid ($K02 = "0"$).
P03	Open.	The key-on wakeup function is invalid (K03 = "0").
1 00	Connect to Vss.	N-channel open-drain is selected for the output structure (FR03 = "0").
	Comitot to voc.	Pull-up transistor is OFF (PU03 = "0").
		The key-on wakeup function is invalid (K03 = "0").
P10	Open.	The key-on wakeup function is invalid (K10 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR10 = "0").
		Pull-up transistor is OFF (PU10 = "0").
		The key-on wakeup function is invalid (K10 = "0").
P11/CNTR1	Open.	CNTR1 input is not selected for the timer 1 count source (W11, W10 ≠ "10").
, 2		The key-on wakeup function is invalid (K11 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR11 = "0").
		Pull-up transistor is OFF (PU11 = "0").
		The key-on wakeup function is invalid (K11 = "0").
P12/CNTR0	Open.	CNTR0 input is not selected for the timer 2 count source (W21, W20 ≠ "10").
		The key-on wakeup function is invalid (K12 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR12 = "0").
		Pull-up transistor is OFF (PU12 = "0").
		The key-on wakeup function is invalid (K12 = "0").
P13/INT	Open.	INT pin input is disabled (I13 = "0").
		The key-on wakeup function is invalid (K13 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR13 = "0").
		Pull-up transistor is OFF (PU13 = "0").
		The key-on wakeup function is invalid (K13 = "0").
P20/AIN0, P21/AIN1	Open.	The key-on wakeup function is invalid (K20, K21 = "0").
	Connect to Vss.	N-channel open-drain is selected for the output structure (FR20, FR21 = "0").
		Pull-up transistor is OFF (PU20, PU21 = "0").
		The key-on wakeup function is invalid (K20, K21 = "0").

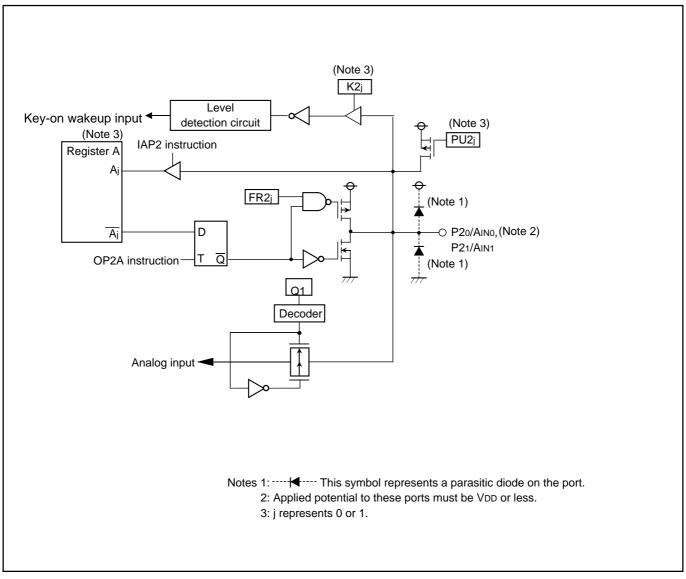
(Note when connecting to Vss or VDD)

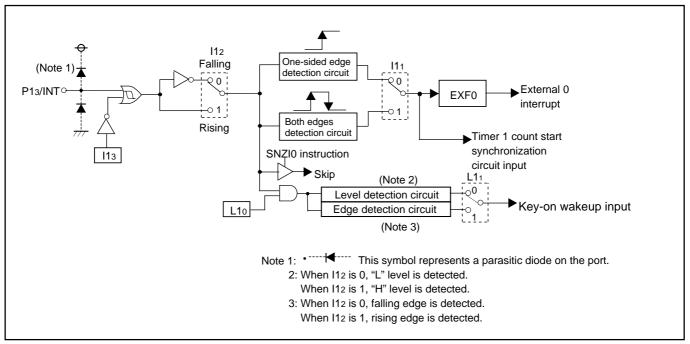


[•] Connect the unused pins to Vss using the thickest wire at the shortest distance against noise.


PORT BLOCK DIAGRAMS


Port block diagram (1)


Port block diagram (2)


Port block diagram (3)

Port block diagram (4)

Port block diagram (5)

External interrupt circuit structure

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of A₀ is stored in carry flag CY with the RAR instruction (Figure 2)

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

Register E is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

Also, when the TABP p instruction is executed at UPTF flag = "1", the high-order 2 bits of ROM reference data is stored to the low-order 2 bits of register D, the high-order 1 bit of register D is "0". When the TABP p instruction is executed at UPTF flag = "0", the contents of register D remains unchanged. The UPTF flag is set to "1" with the SUPT instruction and cleared to "0" with the RUPT instruction. The initial value of UPTF flag is "0".

Register D is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

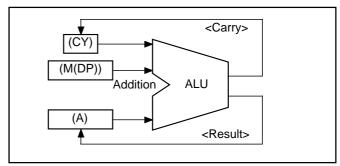


Fig. 1 AMC instruction execution example

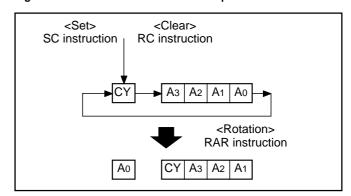


Fig. 2 RAR instruction execution example

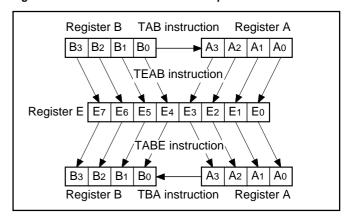


Fig. 3 Registers A, B and register E

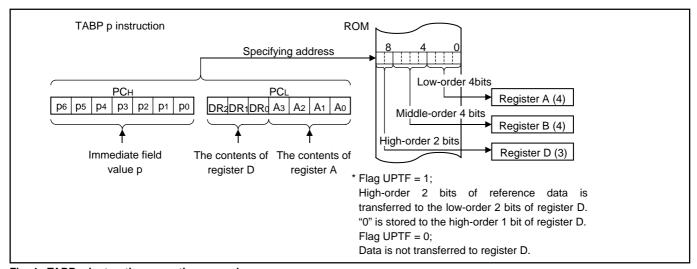


Fig. 4 TABP p instruction execution example

(5) Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- · performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.

The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.

Figure 5 shows the stack registers (SKs) structure.

Figure 6 shows the example of operation at subroutine call.

(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine.

Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

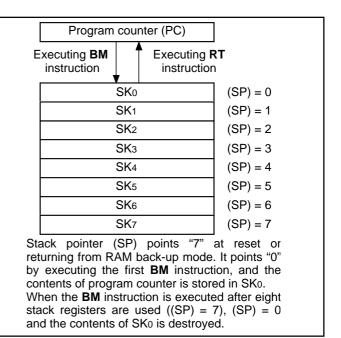


Fig. 5 Stack registers (SKs) structure

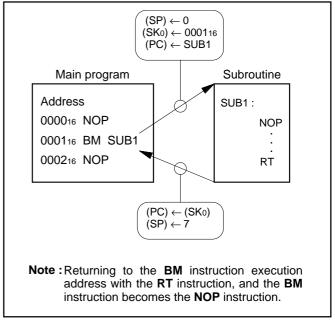


Fig. 6 Example of operation at subroutine call

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PCH does not specify after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

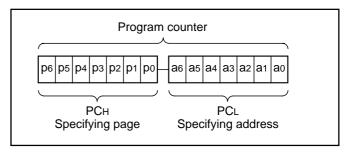


Fig. 7 Program counter (PC) structure

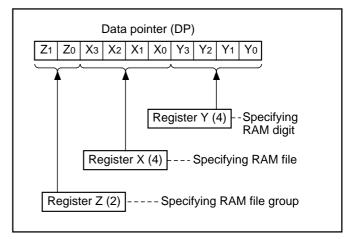


Fig. 8 Data pointer (DP) structure

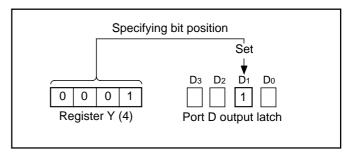


Fig. 9 SD instruction execution example

PROGRAM MEMOY (ROM)

1 word of program memory is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34508G4.

Table 1 ROM size and pages

Part number	ROM (PROM) size (X 10 bits)	Pages
M34508G4	4096 words	32 (0 to 31)
M34508G4H	4096 words	32 (0 to 31)

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address. Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction

ROM pattern (bits 7 to 0) of all addresses can be used as data areas with the TABP p instruction.

ROM Code Protect Address

when it starts on page 2.

When selecting the protect bit write by using a serial programmer or selecting protect enabled for writing shipment by Renesas Technology corp., reading or writing from/to QzROM is disabled by a serial programmer.

As for the QzROM product in blank, the ROM code is protected by selecting the protect bit write at ROM writing with a serial programmer.

As for the QzROM product shipped after writing, whether the ROM code protect is used or not can be selected as ROM option setup ("MASK option" written in the mask file converter) when ordering.

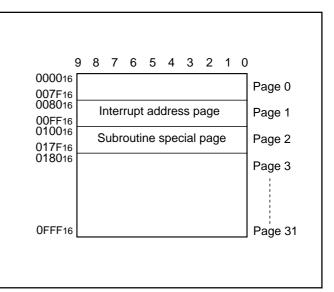


Fig. 10 ROM map of M34508G4

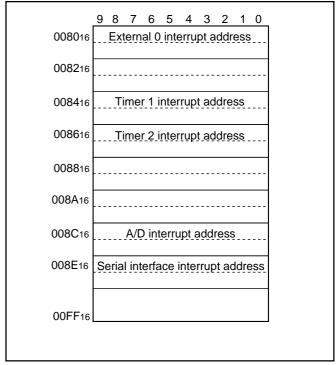


Fig. 11 Page 1 (addresses 008016 to 00FF16) structure

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM.

Table 2 shows the RAM size. Figure 12 shows the RAM map.

• Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

Table 2 RAM size

Part number	RAM size			
M34508G4	256 words X 4 bits (1024 bits)			
M34508G4H	256 words X 4 bits (1024 bits)			

RAM 256 words **X** 4 bits (1024 bits)

	Register Z					()	,,,,,	
	Register X	0	1	2	3		6	7	 15
	0								
	1								
	2 3								
	3								
	4								
	5								
>	6								
ster	7								
Register Y	8								
-	9								
	10								
	11								
	12								
	13								
	14								
	15								

Fig. 12 RAM map

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

- An interrupt activated condition is satisfied (request flag = "1")
- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = "1")

Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the EI instruction is executed.

(2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.

Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction.

Table 5 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to "0" when either;

- an interrupt occurs, or
- the next instruction is skipped with a skip instruction.

Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.

Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.

If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

Table 3 Interrupt sources

Priority level	Interrupt name	Activated condition	Interrupt address
1	External 0 interrupt	Level change of INT pin	Address 0 in page 1
2	Timer 1 interrupt	Timer 1 underflow	Address 4 in page 1
3	Timer 2 interrupt	Timer 2 underflow	Address 6 in page 1
4	A/D interrupt	Completion of A/D conversion	Address C in page 1
5	Serial interface interrupt	Completion of serial interface transmit/ recieve	Address E in page 1

Table 4 Interrupt request flag, interrupt enable bit and skip instruction

Interrupt name	Interrupt request flag	Skip instruction	Interrupt enable bit
External 0 interrupt	EXF0	SNZ0	V10
Timer 1 interrupt	T1F	SNZT1	V12
Timer 2 interrupt	T2F	SNZT2	V13
A/D interrupt	ADF	SNZAD	V22
Serial interface interrupt	SIOF	SNZSI	V23

Table 5 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction	
1	Enabled	Invalid	
0	Disabled	Valid	

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 14).

- Program counter (PC)
 - An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).
- Interrupt enable flag (INTE)
 - INTE flag is cleared to "0" so that interrupts are disabled.
- Interrupt request flag
 Only the request flag for the current interrupt source is cleared to "0."
- Data pointer, carry flag, skip flag, registers A and B
 The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address.

Use the RTI instruction to return from an interrupt service routine. Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 13)

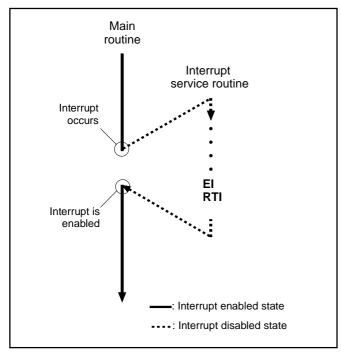


Fig. 13 Program example of interrupt processing

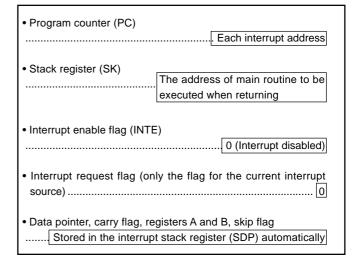


Fig. 14 Internal state when interrupt occurs

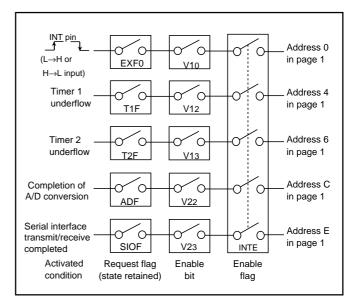


Fig. 15 Interrupt system diagram

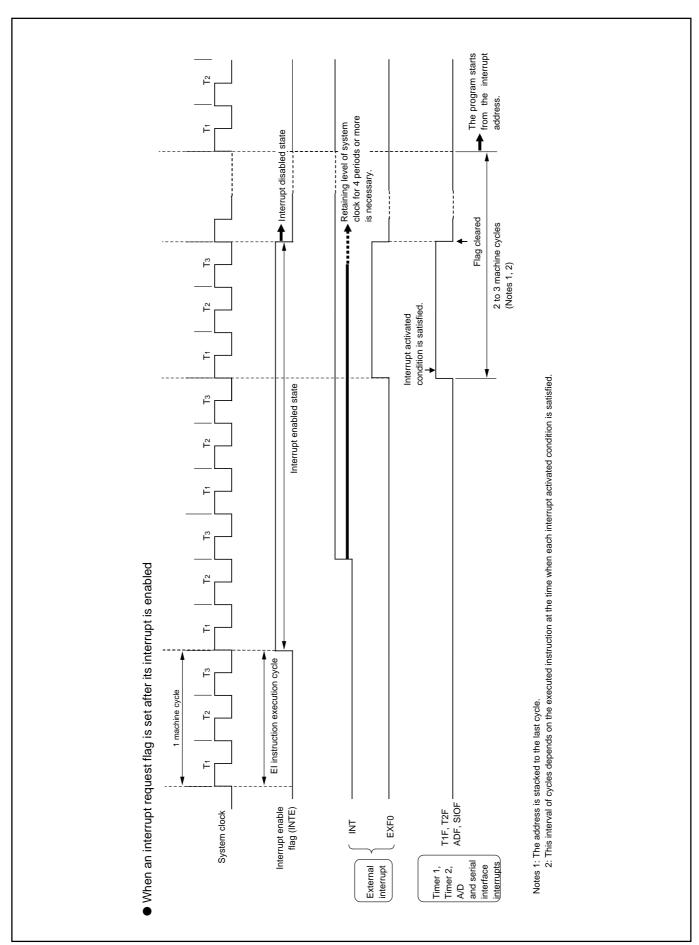
(6) Interrupt control registers

Interrupt control register V1
 Interrupt enable bits of external 0, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A.

• Interrupt control register V2

The A/D interrupt enable bit and serial interface interrupt enable bit are assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A.

Table 6 Interrupt control registers


	Interrupt control register V1	at	reset : 00002	at RAM back-up : 00002	R/W TAV1/TV1A
V13 Timer 2 interrupt enable bit		0	Interrupt disabled ((SNZT2 instruction is valid)	
V 13	V 13 Timer 2 interrupt enable bit		Interrupt enabled (SNZT2 instruction is invalid)	
\/10	V12 Timer 1 interrupt enable bit	0	Interrupt disabled (SNZT1 instruction is valid)		
V 12		1	Interrupt enabled (SNZT1 instruction is invalid)	
V11	Not used	0	This bit has no function, but read/write is enabled.		
V 11	Not used	1			
1/40	Todamad O'stamant anabla bit	0	Interrupt disabled ((SNZ0 instruction is valid)	
V10 External 0 interrupt enable bit	External o interrupt enable bit	1	Interrupt enabled (SNZ0 instruction is invalid)	

	Interrupt control register V2		reset : 00002	at RAM back-up : 00002	R/W TAV2/TV2A
\/Os	V23 Serial interface interrupt enable bit		Interrupt disabled (SNZSI instruction is valid)		
V23			Interrupt enabled (SNZSI instruction is invalid)	
\/O-	A/D interrupt enable bit	0	Interrupt disabled (SNZAD instruction is valid)		
V22	A/D interrupt enable bit	1	Interrupt enabled (SNZAD instruction is invalid)		
1/0.	Not used	0	This bit has no function, but read/write is enabled.		
V21	Not used	1	This bit has no function, but read/write is enabled.		
\/O-	V20 Not used	0	This bit has no function, but read/write is enabled.		
V20		1			

Note: "R" represents read enabled, and "W" represents write enabled.

(7) Interrupt sequence

Interrupts only occur when the respective INTE flag, interrupt enable bits (V10, V12, V13, V22, V23), and interrupt request flag are "1." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 16).

EXTERNAL INTERRUPTS

The 4508 Group has the external 0 interrupt. An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).

The external interrupt can be controlled with the interrupt control register I1.

Table 7 External interrupt activated conditions

Name	Input pin	Activated condition	Valid waveform selection bit
External 0 interrupt	P13/INT	When the next waveform is input to P13/INT pin	I1 1
		 Falling waveform ("H"→"L") 	l12
		 Rising waveform ("L"→"H") 	
		Both rising and falling waveforms	

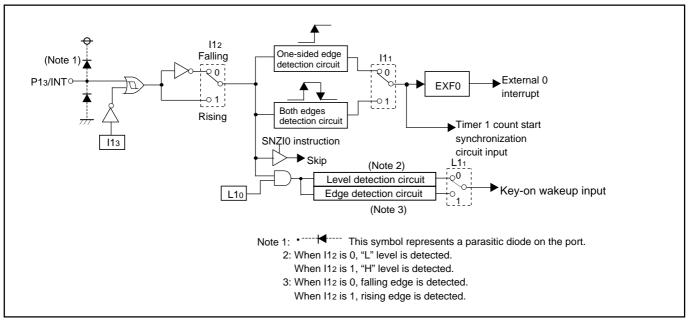


Fig. 17 External interrupt circuit structure

(1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to P13/INT pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 0 interrupt activated condition
 - External 0 interrupt activated condition is satisfied when a valid waveform is input to P13/INT pin.
 - The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.

- ① Set the bit 3 of register I1 to "1" for the INT pin to be in the input enabled state.
- $\ensuremath{@}$ Select the valid waveform with the bits 1 and 2 of register I1.
- ③ Clear the EXF0 flag to "0" with the SNZ0 instruction.
- Set the NOP instruction for the case when a skip is performed
 with the SNZ0 instruction.
- Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the P13/INT pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs.

(2) External interrupt control registers

• Interrupt control register I1

Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 8 External interrupt control register

	Interrupt control register I1		reset : 00002	at RAM back-up : state retained	R/W TAI1/TI1A
l13	I13 INT pin input control bit (Note 2)		INT pin input disab	led	
113	113 INT pirt input control bit (Note 2)	1	INT pin input enab	led	
	Interrupt valid waveform for INT pin/	0	Falling waveform ("L" level of INT pin is recognized with the SNZI0		
l12			instruction)/"L" level		
112	return level selection bit (Note 2)	4	Rising waveform ("H" level of INT pin is recognized with the SNZI0		
		'	instruction)/"H" lev	el	
l11	INT pin edge detection circuit control bit	0	One-sided edge de	etected	
117	in i più euge detection circuit control bit	1	Both edges detected		
l10	INT pin	0	Disabled		
110	timer 1 control enable bit	1	Enabled		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set.

(3) Notes on interrupts

- ① Note [1] on bit 3 of register I1
 - When the input of the INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.
- Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 18[®]) and then, change the bit 3 of register I1.
 - In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 18²).
 - Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 18³).

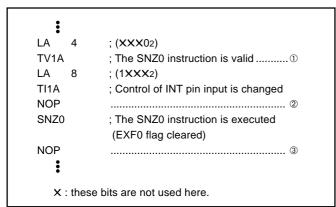


Fig. 18 External 0 interrupt program example-1

- 2 Note [2] on bit 3 of register I1
 - When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.
- When the INT pin input is disabled (register I13 = "0"), set the keyon wakeup of INT pin to be invalid (register L10 = "0") before system enters to the RAM back-up mode. (refer to Figure 19①).

```
LA 0 ; (XXX02)
TI1A ; INT key-on wakeup disabled ...........①
DI
EPOF
POF ; RAM back-up

X: these bits are not used here.
```

Fig. 19 External 0 interrupt program example-2

- ③ Note [3] on bit 2 of register I1
 When the interrupt valid waveform of the P13/INT pin is changed
 - When the interrupt valid waveform of the P13/INT pin is changed with the bit 2 of register I1 in software, be careful about the following notes.
- Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 20①) and then, change the bit 2 of register I1 is changed.
 - In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 20²).
 - Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 20[®]).

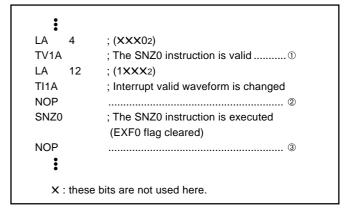


Fig. 20 External 0 interrupt program example-3

TIMERS

The 4508 Group has the following timers.

• Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n+1), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

• Fixed dividing frequency timer

The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to "1" after every n count of a count pulse.

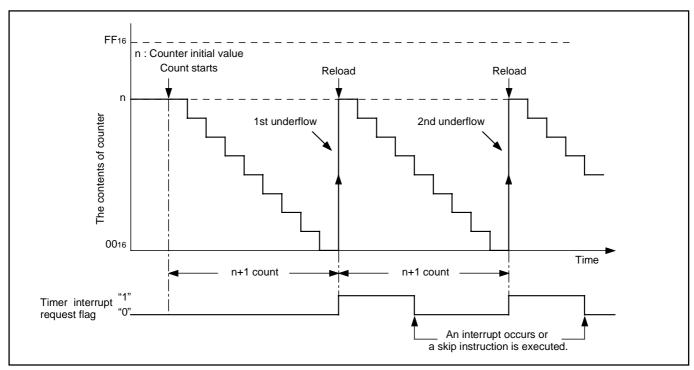


Fig. 21 Auto-reload function

The 4508 Group timer consists of the following circuits.

Prescaler : 8-bit programmable timer

• Timer 1 : 8-bit programmable timer

• Timer 2 : 8-bit programmable timer (Timers 1 and 2 have the interrupt function, respectively)

• 16-bit timer

Prescaler and timers 1 and 2 can be controlled with the timer control registers PA, W1, W2, W5 and W6. The 16-bit timer is a free counter which is not controlled with the control register.

Each function is described below.

Table 9 Function related timers

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register
Prescaler	8-bit programmable	Instruction clock (INSTCK)	1 to 256	Timer 1 and 2 count sources	PA
	binary down counter				
Timer 1	8-bit programmable	PWM2 signal (PWMOD2)	1 to 256	Timer 2 count source	W1
	binary down counter	Prescaler output (ORCLK)		CNTR0 output	W5
	(link to INT input)	CNTR1 input		Timer 1 interrupt	W6
	(with PWM output function)	On-chip oscillator clock (f(RING))			
Timer 2	8-bit programmable	Timer 1 underflow (T1UDF)	1 to 256	Timer 1 count source	W2
	binary down counter	Prescaler output (ORCLK)		CNTR1 output	W5
	(INT input period count	CNTR0 input		Timer 2 interrupt	W6
	function)	System clock (STCK)			
	(with PWM output function)				
Watchdog	16-bit fixed dividing	Instruction clock (INSTCK)	65536	System reset (counting twice)	-
timer	frequency			Decision of flag WDF1	

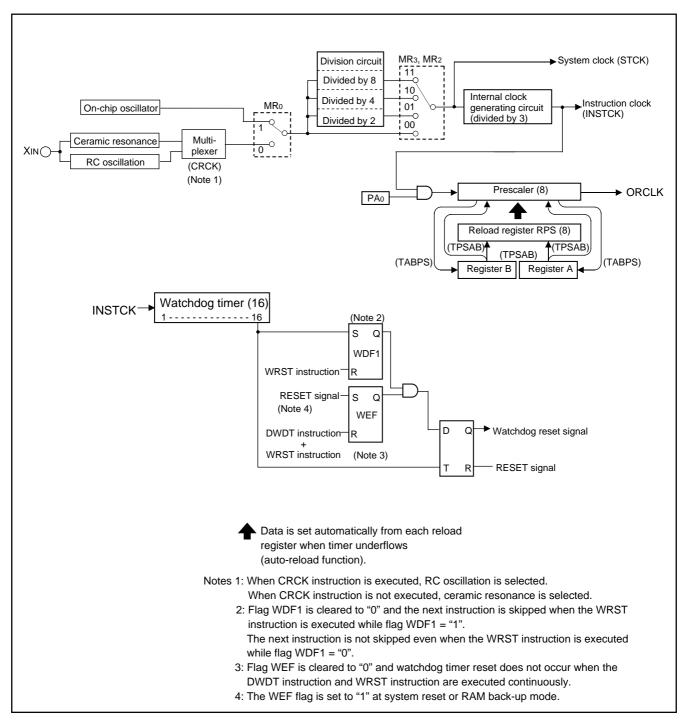


Fig. 22 Timers structure (1)

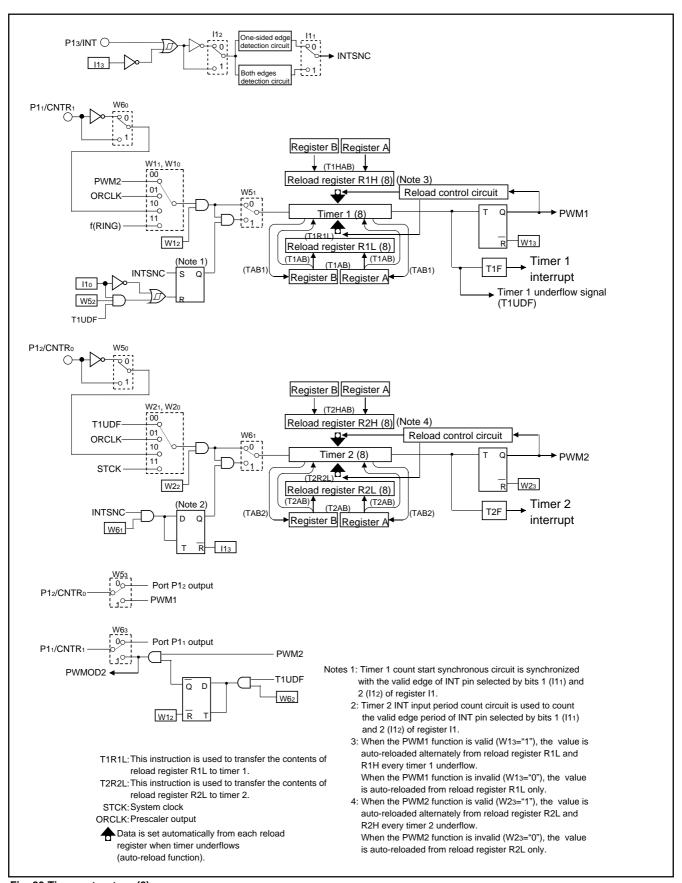


Fig. 23 Timers structure (2)

Table 10 Timer control registers

	Timer control register PA	at reset : 02		at RAM back-up : 02	W TPAA
PA ₀	Prescaler control bit	0	Stop (state initialize	ed)	
PA0 Prescaler control bit		1	Operating		-

Timer control register W1		at reset : 00002		reset : 00002	at RAM back-up : 00002	R/W TAW1/TW1A
W13	PWM1 function control bit	C)	PWM1 function inv	alid	
VV 13	VV13 PVVIVIT function control bit			PWM1 function val	id	
W/12	W12 Timer 1 control bit)	Stop (state retained)		
VV 12				Operating		
		W11	W10		Count source	
W11		0	0	PWM2 signal	PWM2 signal	
	Timer 1 count source selection bits	0	1	Prescaler output (ORCLK)		
W10		1	0	CNTR1 input		
		1	1	On-chip oscillator clock (f(RING))		

Timer control register W2			at reset : 00002		at RAM back-up : 00002	R/W TAW2/TW2A
W23 PWM2 function control bit		()	PWM2 function inv	valid	
VV23	W23 PWM2 function control bit		1	PWM2 function va	lid	
W22	W22 Timer 2 control bit)	Stop (state retained)		
VVZZ	Timer 2 control bit	1		Operating		
1440		W21	W20		Count source	
W21	Timer 2 count source selection bits	0	0	Timer 1 underflow signal (T1UDF)		
		0	1	Prescaler output (ORCLK)		
W20		1	0	CNTR0 input		
		1	1	System clock (STCK)		

Timer control register W5		at reset : 00002		at RAM back-up : state retained	R/W TAW5/TW5A	
W53 P12/CNTR0 pin function selection bit		0	P12 (I/O) / CNTR0	P12 (I/O) / CNTR0 (input)		
		1	P12 (input) /CNTR	0 (I/O)		
W52	Timer 1 count auto-stop circuit	0	Count auto-stop ci	rcuit not selected		
VV32	selection bit (Note 2)		Count auto-stop ci	rcuit selected		
\N/51	W51 Timer 1 count start synchronous circuit selection bit (Note 3)		Count start synchronous circuit not selected			
VVJ			Count start synchronous circuit selected			
W50	CNTR0 pin input count edge selection bit	0	Falling edge			
VV30		1	Rising edge			

Timer control register W6		at reset : 00002		at RAM back-up : state retained	R/W TAW6/TW6A
W63 P11/CNTR1 pin function selection bit		0	P11 (I/O) / CNTR1	(input)	
		1	P11 (input) /CNTR	1 (I/O)	
\M62	W62 CNTR 1 pin output auto-control circuit selection bit		Output auto-control circuit not selected		
VV02			Output auto-contro	l circuit selected	
W61	Timer 2	0	INT pin input perior	d count circuit not selected	
****	INT pin input period count circuit selection bit	1	INT pin input perior	d count circuit selected	
W60	CNTP4 pip input count adda calcation bit	0	Falling edge		
*****	CNTR1 pin input count edge selection bit	1	Rising edge		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} This function is valid only when the INT pin/timer 1 control is enabled (I10="1") and the timer 1 count start synchronous circuit is selected (W51="1").

^{3:} This function is valid only when the INT pin/timer 1 control is enabled (I10="1").

(1) Timer control registers

· Timer control register PA

Register PA controls the count operation of prescaler. Set the contents of this register through register A with the TPAA instruction.

• Timer control register W1

Register W1 controls the count operation and count source of timer 1, and PWM1 function. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

• Timer control register W2

Register W2 controls the count operation and count source of timer 2, and PWM2 function. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

• Timer control register W5

Register W5 controls the input count edge of CNTR0 pin, timer 1 count start synchronous circuit, timer 1 auto-stop circuit and P12/CNTR0 pin function. Set the contents of this register through register A with the TW5A instruction. The TAW5 instruction can be used to transfer the contents of register W5 to register A.

Timer control register W6

Register W6 controls the input count edge of CNTR1 pin, the INT pin input count start synchronous circuit and CNTR1 pin output auto-control circuit and the P11/CNTR1 pin function. Set the contents of this register through register A with the TW6A instruction. The TAW6 instruction can be used to transfer the contents of register W6 to register A.

(2) Prescaler

Prescaler is an 8-bit binary down counter with the prescaler reload register RPS. Data can be set simultaneously in prescaler and the reload register RPS with the TPSAB instruction. Data can be read from reload register RPS with the TABPS instruction.

Stop counting and then execute the TPSAB or TABPS instruction to read or set prescaler data.

Prescaler starts counting after the following process;

① set data in prescaler, and

2 set the bit 0 of register PA to "1."

When a value set in reload register RPS is n, prescaler divides the count source signal by n + 1 (n = 0 to 255).

Count source for prescaler is the instruction clock (INSTCK).

Once count is started, when prescaler underflows (the next count pulse is input after the contents of prescaler becomes "0"), new data is loaded from reload register RPS, and count continues (auto-reload function).

The output signal (ORCLK) of prescaler can be used for timer 1 and 2 count sources.

(3) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with two timer 1 reload registers (R1L, R1H). Data can be set simultaneously in timer 1 and the reload register R1L with the T1AB instruction. Data can be set in the reload register R1H with the T1HAB instruction. The contents of reload register R1L set with the T1AB instruction can be set to timer 1 again with the T1R1L instruction. Data can be read from timer 1 with the TAB1 instruction.

Stop counting and then execute the T1AB or TAB1 instruction to read or set timer 1 data.

When executing the T1HAB instruction to set data to reload register R1H while timer 1 is operating, avoid a timing when timer 1 underflows.

Timer 1 starts counting after the following process;

- ① set data in timer 1
- 2 set count source by bits 0 and 1 of register W1, and
- 3 set the bit 2 of register W1 to "1."

When a value set in reload register R1L is n and a value set in reload register R1H is m, timer 1 divides the count source signal by n + 1 or m + 1 (n = 0 to 255, m = 0 to 255).

<Bit 3 of register W1 = "0" (PWM1 function invalid)>

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1L, and count continues (auto-reload function).

<Bit 3 of register W1 = "1" (PWM1 function valid)>

Timer 1 generates the PWM1 signal of the "L" interval set as reload register R1L, and the "H" interval set as reload register R1H. The PWM1 signal generated by timer 1 is output from CNTR0 pin by setting "1" to bit 3 of register W5.

After timer 1 control by INT pin is enabled by setting the bit 0 of register I1 to "1", INT pin input can be used as the start trigger for timer 1 count operation by setting the bit 1 of register W5 to "1".

Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 2 of register W5 to "1."

(4) Timer 2 (interrupt function)

Timer 2 is an 8-bit binary down counter with two timer 2 reload registers (R2L, R2H). Data can be set simultaneously in timer 2 and the reload register R2L with the T2AB instruction. Data can be set in the reload register R2H with the T2HAB instruction. The contents of reload register R2L set with the T2AB instruction can be set to timer 2 again with the T2R2L instruction. Data can be read from timer 2 with the TAB2 instruction.

Stop counting and then execute the T2AB or TAB2 instruction to read or set timer 2 data.

When executing the T2HAB instruction to set data to reload register R2H while timer 2 is operating, avoid a timing when timer 2 underflows.

Timer 2 starts counting after the following process;

- 1) set data in timer 2
- 2 set count source by bits 0 and 1 of register W2, and
- 3 set the bit 2 of register W2 to "1."

When a value set in reload register R2L is n and a value set in reload register R2H is m, timer 2 divides the count source signal by n + 1 or m + 1 (n = 0 to 255, m = 0 to 255).

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2L, and count continues (auto-reload function).

<Bit 3 of register W2 = "0" (PWM2 function invalid)>

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2L, and count continues (auto-reload function).

<Bit 3 of register W2 = "1" (PWM2 function valid)>

Timer 2 generates the PWM2 signal of the "L" interval set as reload register R2L, and the "H" interval set as reload register R2H. The PWM2 signal generated by timer 2 is output from CNTR1 pin by setting "1" to bit 3 of register W6.

PWM2 output to CNTR1 pin combined with timer 1 can be controlled by setting the bit 2 of register W6 to "1."

Input period of INT pin by timer 2 can be counted by setting the bit 1 of register W6 to "1."

(5) Count start synchronization circuit (timer 1)

Timer 1 has the count start synchronous circuit which synchronizes the input of INT pin, and can start the timer count operation.

Timer 1 count start synchronous circuit function can be selected after timer 1 control by INT pin is enabled by setting the bit 0 of register I1 to "1" and its function is selected by setting the bit 1 of register W5 to "1".

When timer 1 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to timer by inputting valid waveform to INT pin.

The valid waveform of INT pin to set the count start synchronous circuit is the same as the external interrupt activated condition.

Once set, the count start synchronous circuit is cleared by clearing the bit I10 to "0" or system reset.

However, when the count auto-stop circuit is selected (W22 = "1"), the count start synchronous circuit is cleared (auto-stop) at the timer

(6) Count auto-stop circuit (timer 1)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.

The count auto-stop circuit is valid by setting the bit 2 of register W5 to "1". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.

This function is valid only when the timer 1 count start synchronous circuit is selected.

(7) INT pin input period count circuit (timer 2)

Timer 2 has the INT pin input period count circuit to count the valid waveform input interval of the INT pin.

When bit 1 of register W6 is set to "1", the INT pin input period count circuit of timer 2 becomes valid, and the count source is input. The count source input is stopped by the next input of valid waveform to the INT pin.

Then, every a valid waveform is input to the INT pin, start/stop of the count source input is alternately repeated.

A valid waveform of the INT pin input is the same as the activated condition of an external interrupt.

The INT pin input period count circuit set once is cleared by setting the INT pin input to be disabled state. The INT pin input can be disabled by clearing bit 3 of register I1 to "0".

(8) Timer input/output pin (P12/CNTR0 pin, P11/ CNTR1 pin)

CNTR0 pin is used to input the timer 2 count source and output the PWM1 signal generated by timer 1.

CNTR1 pin is used to input the timer 1 count source and output the PWM2 signal generated by timer 2.

The P12/CNTR0 pin function can be selected by bit 3 of register W5. The P11/CNTR1 pin function can be selected by bit 3 of register W6. When the CNTR0 input is selected for timer 2 count source, timer 2 counts the falling or rising waveform of CNTR0 input. The count edge is selected by bit 0 of register W5.

When the CNTR1 input is selected for timer 1 count source, timer 1 counts the falling or rising waveform of CNTR1 input. The count edge is selected by bit 0 of register W6.

(9) PWM1 output function (P12/CNTR0, timer 1)

When bit 3 of register W1 is set to "1", the data is reloaded alternately from reload register R1L and R1H every timer 1 underflow. Timer 1 generates the PWM1 signal of the "L" interval set as reload

register R1L, and the "H" interval set as reload register R1H.

In this time, the PWM1 signal generated by timer 1 is output from

In this time, the PWM1 signal generated by timer 1 is output from CNTR0 pin by setting "1" to bit 3 of register W5.

When the TW1A instruction is executed while the PWM1 signal is "H", the contents of register W1 is changed after the "H" interval of the PWM1 signal is ended.

(10) PWM2 output function (P11/CNTR1, timer 1, timer 2)

When bit 3 of register W2 is set to "1", the data is reloaded alternately from reload register R2L and R2H every timer 2 underflow.

Timer 2 generates the PWM2 signal of the "L" interval set as reload register R2L, and the "H" interval set as reload register R2H.

In this time, the PWM2 signal generated by timer 2 is output from CNTR1 pin by setting "1" to bit 3 of register W6.

When bit 2 of register W6 is set to "1", the PWM2 signal output to CNTR1 pin is switched to valid/invalid alternately each timer 1 underflow. However, when timer 1 is stopped (bit 2 of register W1 is cleared to "0"), this function is canceled.

When the TW2A instruction is executed while the PWM2 signal is "H", the contents of register W2 is changed after the "H" interval of the PWM2 signal is ended.

(11) Timer interrupt request flags (T1F, T2F)

Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2).

Use the interrupt control register V1, V2 to select an interrupt or a skip instruction.

An interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction.

(12) Precautions

Prescaler

Stop prescaler counting and then execute the TABPS instruction to read its data.

Stop prescaler counting and then execute the TPSAB instruction to write data to prescaler.

- Timer count source

Stop timer 1 or 2 counting to change its count source.

- Reading the count value

Stop timer 1 or 2 counting and then execute the TAB1 or TAB2 instruction to read its data.

- Writing to the timer

Stop timer 1 or 2 counting and then execute the T1AB, T1R1L, T2AB or T2R2L instruction to write data to timer.

- Writing to reload register

In order to write a data to the reload register R1H while the timer 1 is operating, execute the T1HAB instruction except a timing of the timer 1 underflow.

In order to write a data to the reload register R2H while the timer 2 is operating, execute the T2HAB instruction except a timing of the timer 2 underflow.

- PWM signal (PWM1, PWM2)

If the timer 1 count stop timing and the timer 1 underflow timing overlap during output of the PWM1 signal, a hazard may occur in the PWM1 output waveform.

If the timer 2 count stop timing and the timer 2 underflow timing overlap during output of the PWM2 signal, a hazard may occur in the PWM2 output waveform.

 Prescaler, timer 1 and timer 2 count start timing and count time when operation starts

Count starts from the first rising edge of the count source (2) after prescaler and timer operations start (1).

Time to first underflow (3) is shorter (for up to 1 period of the count source) than time among next underflow (4) by the timing to start the timer and count source operations after count starts.

When selecting CNTR input as the count source of timer, timer operates synchronizing with the count edge (falling edge or rising edge) of CNTR input selected by software.

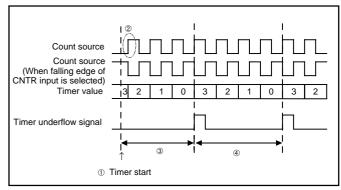


Fig. 24 Timer count start timing and count time when operation starts

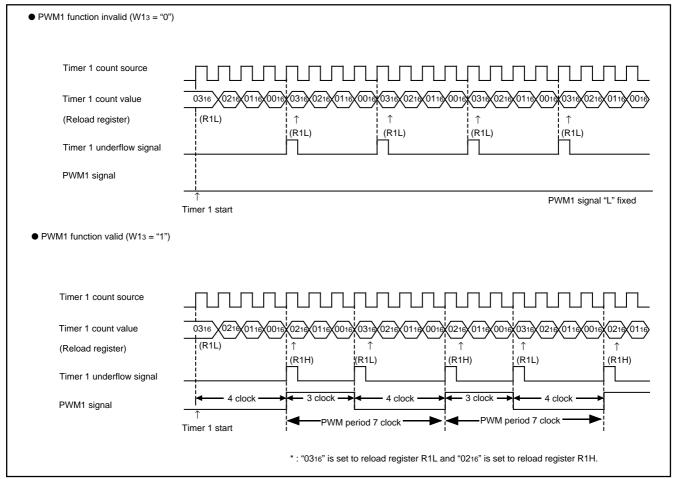


Fig. 25 Timer 1 operation example

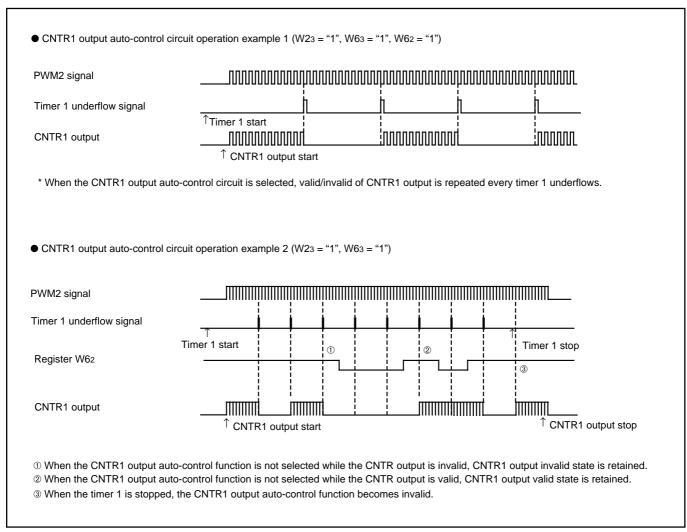
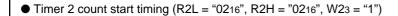
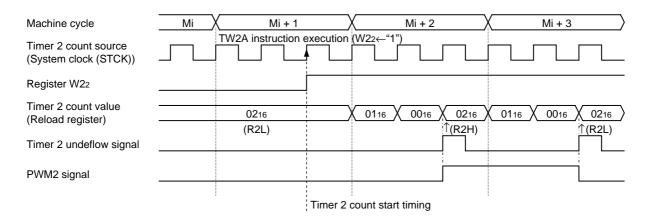
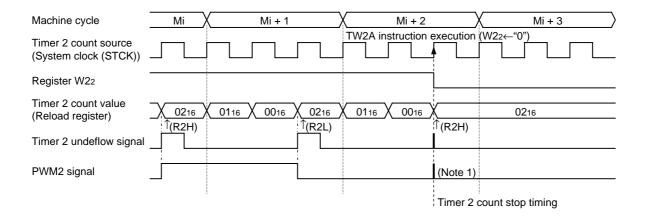





Fig. 26 CNTR1 output auto-control function by timer 1

● Timer 2 count stop timing (R2L = "0216", R2H = "0216", W23 = "1")

Notes 1: If the timer count stop timing and the timer underflow timing overlap while the PWM function is valid (W13="1" or W23="1"), a hazard may occur in the PWM signal waveform.

2: When timer count is stopped during "H" duration of the PWM signal, timer is stopped after the end of the "H" output duration.

Fig. 27 Timer count start/stop timing

WATCHDOG TIMER

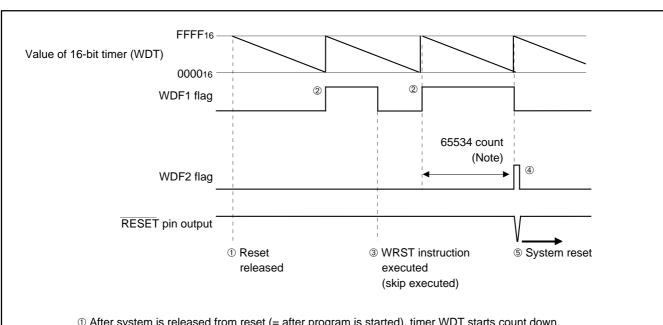
Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).

The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset.

After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches "FFFF16," the next count pulse is input), the WDF1 flag is set to "1."

If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to "1," and the RESET pin outputs "L" level to reset the microcom-

Execute the WRST instruction at each period of 65534 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally.


When the WEF flag is set to "1" after system is released from reset, the watchdog timer function is valid.

When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to "0" and the watchdog timer function is invalid.

The WEF flag is set to "1" at system reset or RAM back-up mode. The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped.

When the WRST instruction is executed while the WDF1 flag is "0", the next instruction is not skipped.

The skip function of the WRST instruction can be used even when the watchdog timer function is invalid.

- ① After system is released from reset (= after program is started), timer WDT starts count down.
- 2 When timer WDT underflow occurs, WDF1 flag is set to "1."
- 3 When the WRST instruction is executed while the WDF1 flag is "1", WDF1 flag is cleared to "0," the next instruction is skipped.
- 4 When timer WDT underflow occurs while WDF1 flag is "1," WDF2 flag is set to "1" and the watchdog reset signal is output.
- ⑤ The output transistor of RESET pin is turned "ON" by the watchdog reset signal and system reset is executed.

Note: The number of count is equal to the number of machine cycle because the count source of watchdog timer is the instruction clock.

Fig. 28 Watchdog timer function

When the watchdog timer is used, clear the WDF1 flag at the period of 65534 machine cycles or less with the WRST instruction.

When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 29).

The watchdog timer is not stopped with only the DWDT instruction. The contents of WDF1 flag and timer WDT are initialized at the RAM back-up mode.

When using the watchdog timer and the RAM back-up mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the RAM back-up state (refer to Figure 30) Also, set the NOP instruction after the WRST instruction, for the case when a skip is performed with the WRST instruction.

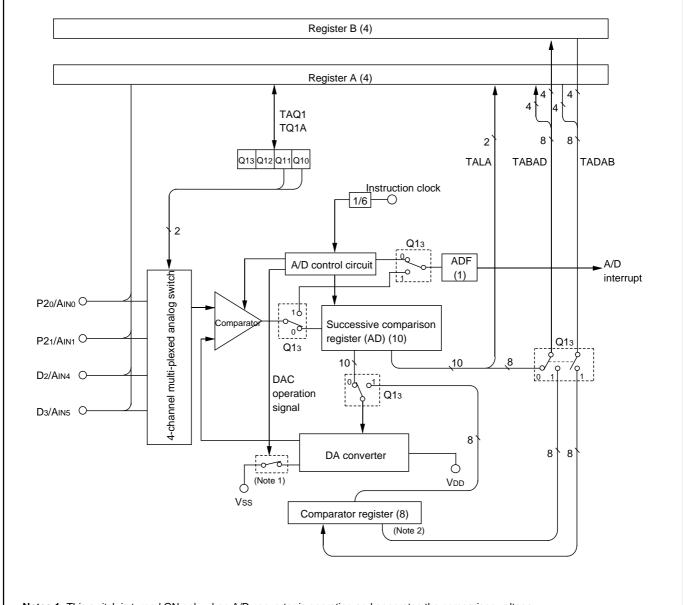
```
WRST; WDF1 flag cleared

DI
DWDT; Watchdog timer function enabled/disabled
WRST; WEF and WDF1 flags cleared
```

Fig. 29 Program example to start/stop watchdog timer

```
WRST; WDF1 flag cleared
NOP
DI; Interrupt disabled
EPOF; POF instruction enabled
POF; RAM back-up mode

↓
Oscillation stop
```


Fig. 30 Program example to enter the RAM back-up mode when using the watchdog timer

A/D CONVERTER

The 4508 Group has a built-in A/D conversion circuit that performs conversion by 10-bit successive comparison method. Table 11 shows the characteristics of this A/D converter. This A/D converter can also be used as an 8-bit comparator to compare analog voltages input from the analog input pin with preset values.

Table 11 A/D converter characteristics

Parameter	Characteristics
Conversion format	Successive comparison method
Resolution	10 bits
Relative accuracy	Linearity error: ±2LSB (VDD=2.7 to 5.5 V)
	Differential non-linearity error: ±0.9LSB
	(VDD=2.7 to 5.5 V)
Conversion speed	31 μ s (f(XIN)=6 MHz, f(STCK)=f(XIN))
Analog input pin	4

Notes 1: This switch is turned ON only when A/D converter is operating and generates the comparison voltage.

2: Writing/reading data to the comparator register is possible only in the comparator mode (Q13=1). The value of the comparator register is retained even when the mode is switched to the A/D conversion mode (Q13=0) because it is separated from the successive comparison register (AD). Also, the resolution in the comparator mode is 8 bits because the comparator register consists of 8 bits.

Fig. 31 A/D conversion circuit structure

Table 12 A/D control registers

A/D control register Q1		at reset : 00002		: 00002	at RAM back-up : state retained	R/W TAQ1/TQ1A	
010	Q13 A/D operation mode selection bit		0		A/D conversion mode		
Q13			1 Comparator mode				
			Q11	Q10		Selected pins	
Q12	Q12	0	0	0	AIN0		
		0	0	1	AIN1		
	Q11 Analog input pin selection bits		1	0	Not available		
Q11			1	1	Not available		
			0	0	AIN4		
		1	0	1	AIN5		
Q10		1	1	0	Not available		
		1	1	1	Not available		

Note: "R" represents read enabled, and "W" represents write enabled.

(1) A/D control register Q1

Register Q1 is used to select the operation mode and one of analog input pins. Set the contents of this register through register A with the TQ1A instruction. The TAQ1 instruction can be used to transfer the contents of register Q1 to register A.

(2) Operating at A/D conversion mode

The A/D conversion mode is set by setting the bit 3 of register Q1 to "0."

(3) Successive comparison register AD

Register AD stores the A/D conversion result of an analog input in 10-bit digital data format. The contents of the high-order 8 bits of this register can be stored in register B and register A with the TABAD instruction. The contents of the low-order 2 bits of this register can be stored into the high-order 2 bits of register A with the TALA instruction. However, do not execute these instructions during A/D conversion.

When the contents of register AD is n, the logic value of the comparison voltage V_{ref} generated from the built-in DA converter can be obtained with the reference voltage V_{DD} by the following formula:

Logic value of comparison voltage Vref

$$V_{ref} = \frac{V_{DD}}{1024} \times n$$

n: The value of register AD (n = 0 to 1023)

(4) A/D conversion completion flag (ADF)

A/D conversion completion flag (ADF) is set to "1" when A/D conversion completes. The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(5) A/D conversion start instruction (ADST)

A/D conversion starts when the ADST instruction is executed. The conversion result is automatically stored in the register AD.

(6) Operation description

A/D conversion is started with the A/D conversion start instruction (ADST). The internal operation during A/D conversion is as follows:

- ① When the A/D conversion starts, the register AD is cleared to "00016."
- ② Next, the topmost bit of the register AD is set to "1," and the comparison voltage Vref is compared with the analog input voltage VIN.
- When the comparison result is Vref < VIN, the topmost bit of the register AD remains set to "1." When the comparison result is Vref > VIN, it is cleared to "0."

The 4508 Group repeats this operation to the lowermost bit of the register AD to convert an analog value to a digital value. A/D conversion stops after 62 machine cycles (31 μ s when f(XIN) = 6.0 MHz in high-speed mode) from the start, and the conversion result is stored in the register AD. An A/D interrupt activated condition is satisfied and the ADF flag is set to "1" as soon as A/D conversion completes (Figure 32).

Table 13 Change of successive comparison register AD during A/D conversion

At starting conversion	Change of successive comparison register AD Comparison voltage (Vref) value
1st comparison	1 0 0 0 0 0 <u>VDD</u>
2nd comparison	*1 1 0 0 0 0
3rd comparison	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
After 10th comparison completes	A/D conversion result *1 *2 *3 *8 *9 *A 2 ± ± VDD 1024

*1: 1st comparison result
*3: 3rd comparison result
*8: 8th comparison result
*9: 9th comparison result
*A: 10th comparison result

(7) A/D conversion timing chart

Figure 32 shows the A/D conversion timing chart.

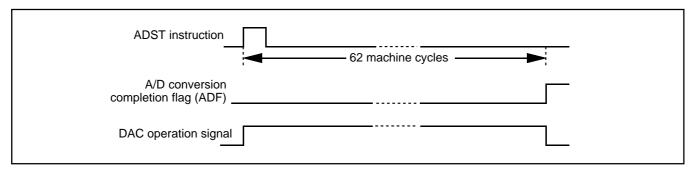


Fig. 32 A/D conversion timing chart

(8) How to use A/D conversion

How to use A/D conversion is explained using as example in which the analog input from P20/AINO pin is A/D converted, and the high-order 4 bits of the converted data are stored in address $M(Z,\,X,\,Y)=(0,\,0,\,0)$, the middle-order 4 bits in address $M(Z,\,X,\,Y)=(0,\,0,\,1)$, and the low-order 2 bits in address $M(Z,\,X,\,Y)=(0,\,0,\,2)$ of RAM. The A/D interrupt is not used in this example.

- ① Select the AINO pin function and A/D conversion mode with the register Q1 (refer to Figure 33).
- ② Execute the ADST instruction and start A/D conversion.
- ③ Examine the state of ADF flag with the SNZAD instruction to determine the end of A/D conversion.
- Transfer the low-order 2 bits of converted data to the high-order 2 bits of register A (TALA instruction).
- \circ Transfer the contents of register A to M (Z, X, Y) = (0, 0, 2).
- ® Transfer the high-order 8 bits of converted data to registers A and B (TABAD instruction).
- $\ensuremath{\mathbb{C}}$ Transfer the contents of register A to M (Z, X, Y) = (0, 0, 1).

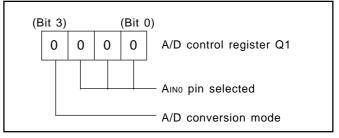


Fig. 33 Setting registers

(9) Operation at comparator mode

The A/D converter is set to comparator mode by setting bit 3 of the register Q1 to "1."

Below, the operation at comparator mode is described.

(10) Comparator register

In comparator mode, the built-in DA comparator is connected to the 8-bit comparator register as a register for setting comparison voltages. The contents of register B is stored in the high-order 4 bits of the comparator register and the contents of register A is stored in the low-order 4 bits of the comparator register with the TADAB instruction.

When changing from A/D conversion mode to comparator mode, the result of A/D conversion (register AD) is undefined.

However, because the comparator register is separated from register AD, the value is retained even when changing from comparator mode to A/D conversion mode. Note that the comparator register can be written and read at only comparator mode.

If the value in the comparator register is n, the logic value of comparison voltage V_{ref} generated by the built-in DA converter can be determined from the following formula:

Logic value of comparison voltage
$$V_{ref}$$

$$V_{ref} = \frac{V_{DD}}{256} \times n$$
n: The value of register AD (n = 0 to 255)

(11) Comparison result store flag (ADF)

In comparator mode, the ADF flag, which shows completion of A/D conversion, stores the results of comparing the analog input voltage with the comparison voltage. When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1." The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(12) Comparator operation start instruction (ADST instruction)

In comparator mode, executing ADST starts the comparator operating.

The comparator stops 8 machine cycles after it has started (6 μ s at f(XIN) = 4.0 MHz in high-speed through mode). When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1."

(13) Notes for the use of A/D conversion 1

TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."

• Operating mode of A/D converter

Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with the bit 3 of register Q1 while the A/D converter is operating.

Clear the bit 2 of register V2 to "0" to change the operating mode from the comparator mode to A/D conversion mode.

The A/D conversion completion flag (ADF) may be set when the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to the bit 3 of register Q1, and execute the SNZAD instruction to clear the ADF flag.

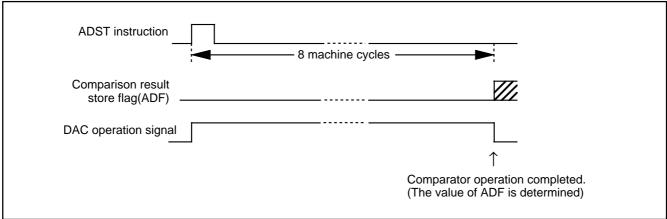


Fig. 34 Comparator operation timing chart

(14) Definition of A/D converter accuracy

The A/D conversion accuracy is defined below (refer to Figure 35).

Relative accuracy

① Zero transition voltage (VoT)

This means an analog input voltage when the actual A/D conversion output data changes from "0" to "1."

② Full-scale transition voltage (VFST)

This means an analog input voltage when the actual A/D conversion output data changes from "1023" to "1022."

3 Linearity error

This means a deviation from the line between VoT and VFST of a converted value between VoT and VFST.

4 Differential non-linearity error

This means a deviation from the input potential difference required to change a converter value between VoT and VFST by 1 LSB at the relative accuracy.

Absolute accuracy

This means a deviation from the ideal characteristics between 0 to VDD of actual A/D conversion characteristics.

Vn: Analog input voltage when the output data changes from "n" to "n+1" (n=0 to 1022)

• 1LSB at relative accuracy $\rightarrow \frac{VFST-V0T}{1022}$ (V)

• 1LSB at absolute accuracy $\rightarrow \frac{VDD}{1024}$ (V

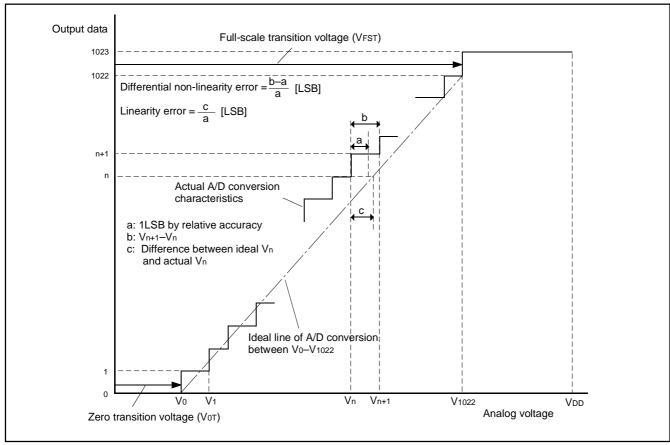


Fig. 35 Definition of A/D conversion accuracy

SERIAL INTERFACE

The 4508 Group has a built-in clock synchronous serial interface which can serially transmit or receive 8-bit data.

Serial interface consists of;

- Serial interface register SI
- Serial interface control register J1
- Serial interface transmit/receive completion flag (SIOF)
- Serial interface counter

Registers A and B are used to perform data transfer with internal CPU.

The pin functions of the serial interface pins can be set with the register J1.

Table 14 Serial interface pins

Pin	Pin function when selecting serial interface
P02/SCK	Clock I/O (Sck)
P01/SOUT	Serial data output (Sout)
P03/SIN	Serial data input (SIN)

Note: Even when the SIN pin function is used, the I/O of port P00 is valid.

Even when the SOUT pin function is used, the input of port P01 is valid.

Even when the SCK pin function is used, the input of P02 is valid.

Be careful when using inputs of both SCK and P02 since the input threshold value of SCK pin is different from that of port P02.

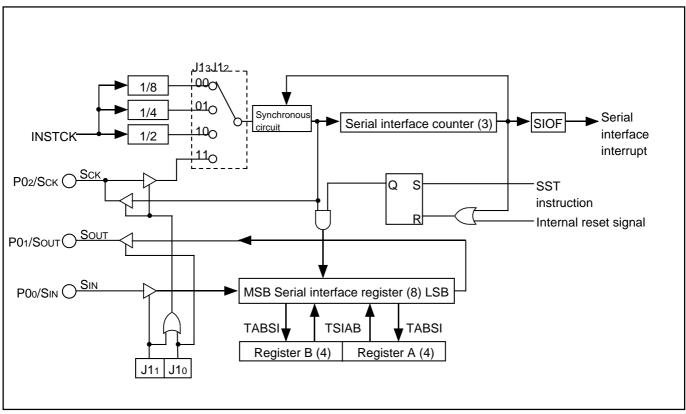


Fig. 36 Serial interface structure

Table 15 Serial interface control register

Serial interface control register J1		at reset : 00002		reset : 00002 at RAM back-up : state retained	R/W TAJ1/TJ1 <i>F</i>	
		J13	J12	Synchronous clock		
J1 3	Serial interface synchronous clock		0	Instruction clock (INSTCK) divided by 8		
			1	Instruction clock (INSTCK) divided by 4		
J12			0	Instruction clock (INSTCK) divided by 2		
			1	External clock (Sck input)		
		J11	J1 0	0 Port function		
J11		0	0	P00, P01,P02 selected/SIN, SOUT, SCK not selected		
	-	0	1	P00, SOUT, SCK selected/SIN, P01, P02 not selected		
J1 0	Serial interface port function selection bits		0	SIN, P01, SCK selected/P00, SOUT, P02 not selected		
		1	1	SIN, SOUT, SCK selected/P00, P01,P02 not selected		

Note: "R" represents read enabled, and "W" represents write enabled.

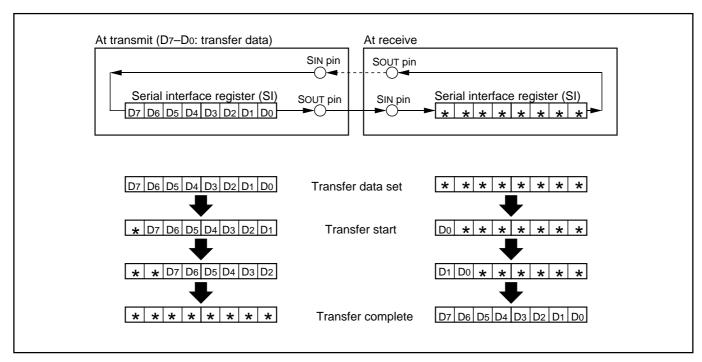


Fig. 37 Serial interface register state when transferring

(1) Serial interface register SI

Serial interface register SI is the 8-bit data transfer serial/parallel conversion register. Data can be set to register SI through registers A and B with the TSIAB instruction. The contents of register A is transmitted to the low-order 4 bits of register SI, and the contents of register B is transmitted to the high-order 4 bits of register SI. During transmission, each bit data is transmitted LSB first from the lowermost bit (bit 0) of register SI, and during reception, each bit data is received LSB first to register SI starting from the topmost bit (bit 7).

When register SI is used as a work register without using serial interface, do not select the Sck pin.

(2) Serial interface transmit/receive completion flag (SIOF)

Serial interface transmit/receive completion flag (SIOF) is set to "1" when serial data transmission or reception completes. The state of SIOF flag can be examined with the skip instruction (SNZSI). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The SIOF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(3) Serial interface start instruction (SST)

When the SST instruction is executed, the SIOF flag is cleared to "0" and then serial interface transmission/reception is started.

(4) Serial interface control register J1

Register J1 controls the synchronous clock, P02/SCK, P01/SouT and P00/SIN pin function. Set the contents of this register through register A with the TJ1A instruction. The TAJ1 instruction can be used to transfer the contents of register J1 to register A.

(5) How to use serial interface

Figure 38 shows the serial interface connection example. Serial interface interrupt is not used in this example. In the actual wiring, pull

up the wiring between each pin with a resistor. Figure 38 shows the data transfer timing and Table 16 shows the data transfer sequence.

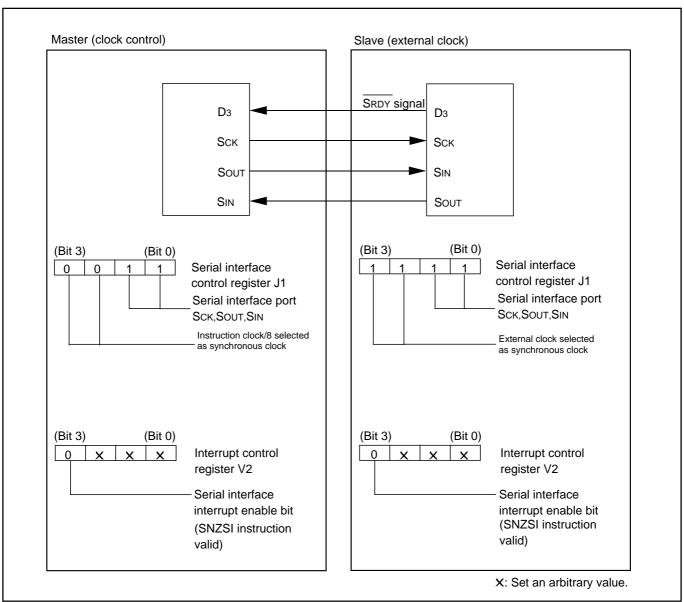


Fig. 38 Serial interface connection example

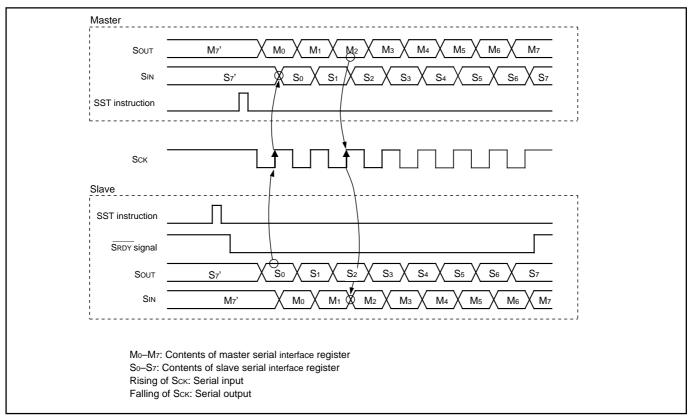


Fig. 39 Timing of serial interface data transfer

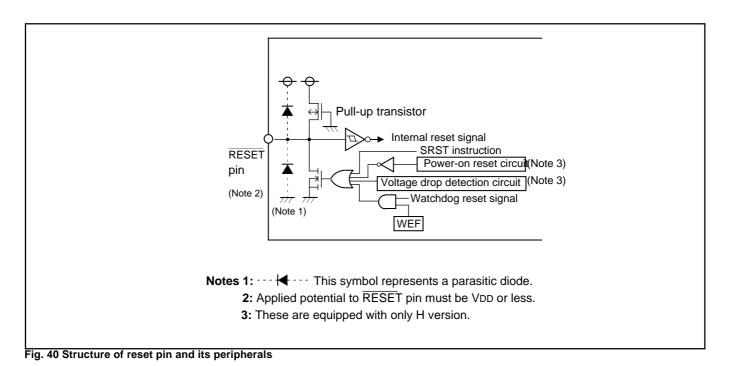
Table 16 Processing sequence of data transfer from master to slave

Master (transmission)	Slave (reception)	
[Initial setting]	[Initial setting]	
• Setting the serial interface control register J1 and interrupt control register V2 shown in Figure 38.	Setting serial interface control register J1, and interrupt control register V2 shown in Figure 38.	
TJ1A and TV2A instructions	TJ1A and TV2A instructions	
• Setting the port received the reception enable signal (SRDY) to the input mode.	Setting the port transmitted the reception enable signal (SRDY) and output- ting "H" level.	
(Port D3 is used in this example)	(Port D3 is used in this example)	
SD instruction	SD instruction	
* [Transmission enable state]	*[Reception enable state]	
• Storing transmission data to serial interface register SI.	The SIOF flag is cleared to "0."	
TSIAB instruction	SST instruction	
	"L" level (reception possible) is output from port D3.	
	RD instruction	
[Transmission]	[Reception]	
•Check port D3 is "L" level.		
SZD instruction		
•Serial transfer starts.		
SST instruction		
•Check transmission completes.	Check reception completes.	
SNZSI instruction	SNZSI instruction	
Wait (timing when continuously transferring)	"H" level is output from port D3.	
	SD instruction	
	[Data processing]	

1-byte data is serially transferred on this process. Subsequently, data can be transferred continuously by repeating the process from * .

When an external clock is selected as a synchronous clock, control the clock externally because serial transfer is performed as long as clock is externally input. (Unlike an internal clock, an external clock is not stopped when serial transfer is completed.) However, the SIOF flag is set to "1" when the clock is counted 8 times after executing the SST instruction. Be sure to set the initial level of the external clock to "H."

RESET FUNCTION


System reset is performed by the followings:

- "L" level is applied to the RESET pin externally,
- System reset instruction (SRST) is executed,
- Reset occurs by watchdog timer,
- Reset occurs by built-in power-on reset (only for H version)
- Reset occurs by voltage drop detection circuit (only for H version) Then when "H" level is applied to RESET pin, software starts from address 0 in page 0.

(1) RESET pin input

System reset is performed certainly by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied:

the value of supply voltage is the minimum value or more of the recommended operating conditions.

Reset input

1 machine cycle or more

O.85VDD

Program starts
(address 0 in page 0)

(Note 1)

On-chip oscillator (internal oscillator) is counted 120 to 144 times (Note 2).

Notes 1: Keep the value of supply voltage to the minimum value or more of the recommended operating conditions.

2: It depends on the internal state at reset.

Fig. 41 RESET pin input waveform and reset release timing

(2) Power-on reset (only for H version)

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, set the time for the supply voltage to rise from 0 V to the minimum voltage of recommended operating conditions to 100 $\,\mu s$ or less.

If the rising time exceeds 100 μ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

(3) System reset instruction (SRST)

By executing the SRST instruction, "L" level is output to RESET pin and system reset is performed.

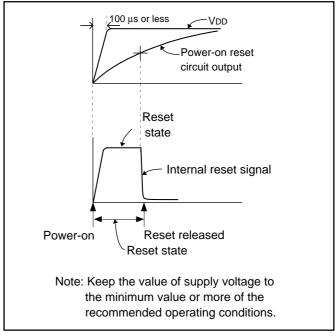


Fig. 42 Power-on reset operation

Table 17 Port state at reset

Name	Function	State	
Do, D1	D0, D1	High-impedance (Notes 1, 2)	
D2/AIN4, D3/AIN5	D2, D3	High-impedance (Notes 1, 2, 3)	
P00/SIN, P01/SOUT, P02/SCK	P00, P01, P02	High-impedance (Notes 1, 2, 3)	
P03	P03	High-impedance (Notes 1, 2, 3)	
P10	P10	High-impedance (Notes 1, 2, 3)	
P11/CNTR1	P11	High-impedance (Notes 1, 2, 3)	
P12/CNTR0	P12	High-impedance (Notes 1, 2, 3)	
P13/INT	P13	High-impedance (Notes 1, 2, 3)	
P20/AIN0, P21/AIN1	P20, P21	High-impedance (Notes 1, 2, 3)	

Notes 1: Output latch is set to "1."

^{2:} The output structure is N-channel open-drain.

^{3:} Pull-up transistor is turned OFF.

(4) Internal state at reset

Figure 43 shows internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure 43 are undefined, so set the initial value to them.

Program counter (PC)	0 0 0 0 0 0 0 0 0 0 0 0 0
Address 0 in page 0 is set to program counter.	
Interrupt enable flag (INTE)	0 (Interrupt disabled)
Power down flag (P)	
External 0 interrupt request flag (EXF0)	
Interrupt control register V1	
Interrupt control register V2	
Interrupt control register I1	0000
Timer 1 interrupt request flag (T1F)	
Timer 2 interrupt request flag (T2F)	
Watchdog timer flags (WDF1, WDF2)	
Watchdog timer enable flag (WEF)	
Timer control register PA	
Timer control register W1	` ' '
Timer control register W2	
Timer control register W5	
Timer control register W6	
Clock control register W6	
Clock control register MR Clock control register RG	
• Serial interface transmit/receive completion flag (SIOF)	
Serial interface control register J1	
Serial interface register SI	
A/D conversion completion flag (ADF)	
A/D control register Q1	
• Successive comparison register AD	
Comparator register	
Key-on wakeup control register K0	0 0 0
Key-on wakeup control register K1	
Key-on wakeup control register K2	
Key-on wakeup control register L1	
Pull-up control register PU0	0 0 0 0
Pull-up control register PU1	0 0 0 0
Pull-up control register PU2	0 0 0 0
Port output structure control register FR0	0000
Port output structure control register FR1	
Port output structure control register FR2	
Port output structure control register FR3	
Carry flag (CY)	0
Register A	0 0 0 0
Register B	
• Register D	
• Register E	
• Register X	
• Register Y	
• Register Z	
Stack pointer (SP)	
Operation source clock	
	On-crip oscillator (operating) Operating

Fig. 43 Internal state at reset

VOLTAGE DROP DETECTION CIRCUIT (only for H version)

The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer by outputting "L" level to RESET pin if the supply voltage drops below a set value.

(1) SVDE instruction

If the SVDE instruction is not executed (initial state), the voltage drop detection circuit becomes invalid at RAM back-up mode.

When the SVDE instruction is executed, the voltage drop detection circuit is valid even after system enters into the RAM back-up mode. The SVDE instruction can be executed only once.

In order to release the execution of the SVDE instruction, the system reset is required.

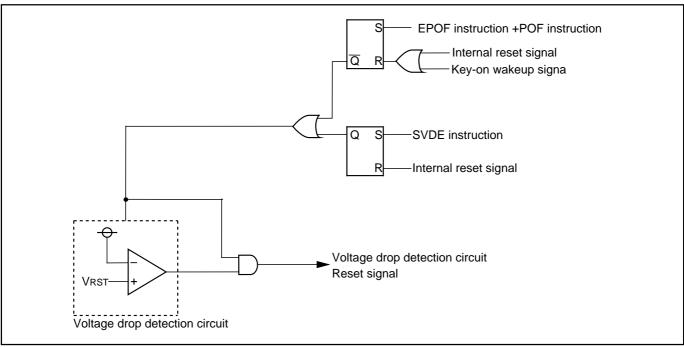


Fig. 44 Voltage drop detection reset circuit

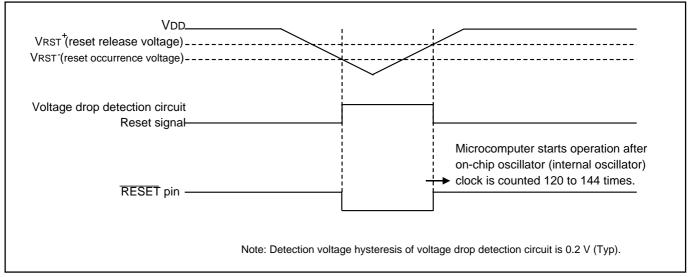


Fig. 45 Voltage drop detection circuit operation waveform

Table 18 Voltage drop detection circuit operation state

	At CPU operating	At RAM back-up mode
SVDE instruction not executed	Valid	Invalid
SVDE instruction executed	Valid	Valid

RAM BACK-UP MODE

The 4508 Group has the RAM back-up mode.

When the POF instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state.

The POF instruction is equal to the NOP instruction when the EPOF instruction is not executed before the POF instruction.

As oscillation stops retaining RAM, the function of reset circuit and states at RAM back-up mode, current dissipation can be reduced without losing the contents of RAM.

Table 19 shows the function and states retained at RAM back-up. Figure 46 shows the state transition.

(1) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the power down flag (P) with the SNZP instruction.

(2) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the EPOF instruction and POF instruction continuously, the CPU starts executing the program from address 0 in page 0. In this case, the P flag is "1."

(3) Cold start condition

The CPU starts executing the program from address 0 in page 0 when:

- "L" level is applied to RESET pin,
- system reset (SRST) is performed,
- · reset by watchdog timer is performed,
- reset by the built-in power-on reset circuit is performed (only for H version), or
- reset by the voltage drop detection circuit is performed (only for H version).

In this case, the P flag is "0."

Table 19 Functions and states retained at RAM back-up

Program counter (PC), registers A, B, carry flag (CY), stack pointer (SP) (Note 2) Contents of RAM Interrupt control registers V1, V2 Interrupt control register I1 Selected oscillation circuit (execution of CRCK) Clock control register MR Clock control register RG Timer 1, Timer 2 function Watchdog timer function Timer control register PA Timer control registers W1, W2 Timer control registers W5, W6 Serial interface function Serial interface control register J1 A/D conversion function A/D control register Q1	X 0 X 0 0 0
Contents of RAM Interrupt control registers V1, V2 Interrupt control register I1 Selected oscillation circuit (execution of CRCK) Clock control register MR Clock control register RG Timer 1, Timer 2 function Watchdog timer function Timer control register PA Timer control registers W1, W2 Timer control registers W5, W6 Serial interface function Serial interface control register J1 A/D conversion function	0 x 0
Interrupt control registers V1, V2 Interrupt control register I1 Selected oscillation circuit (execution of CRCK) Clock control register MR Clock control register RG Timer 1, Timer 2 function Watchdog timer function Timer control register PA Timer control registers W1, W2 Timer control registers W5, W6 Serial interface function Serial interface control register J1 A/D conversion function	X 0 0
Interrupt control register I1 Selected oscillation circuit (execution of CRCK) Clock control register MR Clock control register RG Timer 1, Timer 2 function Watchdog timer function Timer control register PA Timer control registers W1, W2 Timer control registers W5, W6 Serial interface function Serial interface control register J1 A/D conversion function	0
Selected oscillation circuit (execution of CRCK) Clock control register MR Clock control register RG Timer 1, Timer 2 function Watchdog timer function Timer control register PA Timer control registers W1, W2 Timer control registers W5, W6 Serial interface function Serial interface control register J1 A/D conversion function	0
Clock control register MR Clock control register RG Timer 1, Timer 2 function Watchdog timer function Timer control register PA Timer control registers W1, W2 Timer control registers W5, W6 Serial interface function Serial interface control register J1 A/D conversion function	
Clock control register RG Timer 1, Timer 2 function Watchdog timer function Timer control register PA Timer control registers W1, W2 Timer control registers W5, W6 Serial interface function Serial interface control register J1 A/D conversion function	X
Timer 1, Timer 2 function Watchdog timer function Timer control register PA Timer control registers W1, W2 Timer control registers W5, W6 Serial interface function Serial interface control register J1 A/D conversion function	
Watchdog timer function Timer control register PA Timer control registers W1, W2 Timer control registers W5, W6 Serial interface function Serial interface control register J1 A/D conversion function	×
Timer control register PA Timer control registers W1, W2 Timer control registers W5, W6 Serial interface function Serial interface control register J1 A/D conversion function	(Note 3)
Timer control registers W1, W2 Timer control registers W5, W6 Serial interface function Serial interface control register J1 A/D conversion function	X (Note 4)
Timer control registers W5, W6 Serial interface function Serial interface control register J1 A/D conversion function	×
Serial interface function Serial interface control register J1 A/D conversion function	×
Serial interface control register J1 A/D conversion function	0
A/D conversion function	×
	0
A/D control register O1	×
A/D CONTROL TEGISTER Q I	0
Voltage drop detection circuit	(Note 5)
Port level	0
Key-on wakeup control registers K0 to K2, L1	0
Pull-up control registers PU0 to PU2	0
Port output structure control registers FR0 to FR3	0
External interrupt request flag (EXF0)	×
Timer interrupt request flags (T1F, T2F)	(Note 3)
A/D conversion completion flag (ADF)	×
Serial interface transmit/receive completion flag (SIOF)	×
Interrupt enable flag (INTE)	×
Watchdog timer flags (WDF1, WDF2)	X (Note 4)
Watchdog timer enable flag (WEF)	

Notes 1:"O" represents that the function can be retained, and "X" represents that the function is initialized.

Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.

- 2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at RAM back-up.
- 3: The state of the timer is undefined.
- 4: Initialize the watchdog timer flag WDF1 with the WRST instruction, and then set the system to be in the RAM back-up mode.
- 5: The voltage drop detection circuit is equipped with only H version. In the RAM back-up mode, when the SVDE instruction is not executed, the voltage drop detection circuit is invalid, and when the SVDE instruction is executed, the voltage drop detection circuit is valid.

(4) Return signal

An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped. Table 20 shows the return condition for each return source.

(5) Control registers

- Key-on wakeup control register K0
 Register K0 controls the port P0 key-on wakeup function. Set the
 contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the
 contents of register K0 to register A.
- Key-on wakeup control register K1
 Register K1 controls the port P1 key-on wakeup function. Set the
 contents of this register through register A with the TK1A instruction. In addition, the TAK1 instruction can be used to transfer the
 contents of register K1 to register A.
- Key-on wakeup control register K2
 Register K2 controls the ports P2, D2 and D3 key-on wakeup function. Set the contents of this register through register A with the TK2A instruction. In addition, the TAK2 instruction can be used to transfer the contents of register K2 to register A.
- Key-on wakeup control register L1
 Register L1 controls the selection of the return condition and valid
 waveform/level of port P1, and the selection of the INT pin return
 condition and INT pin key-on wakeup function. Set the contents of
 this register through register A with the TL1A instruction. In addition, the TAL1 instruction can be used to transfer the contents of
 register L1 to register A.

- Pull-up control register PU0
- Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPU0A instruction. In addition, the TAK1 instruction can be used to transfer the contents of register K0 to register A.
- Pull-up control register PU1
 - Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction. In addition, the TAPU1 instruction can be used to transfer the contents of register PU1 to register A.
- Pull-up control register PU2
 Register PU2 controls the ON/OFF of the ports P2, D2 and D3 pull-up transistor. Set the contents of this register through register A with the TPU2A instruction. In addition, the TAPU2 instruction can

be used to transfer the contents of register PU2 to register A.

Interrupt control register I1
Register I1 controls the valid waveform/level of the external 0 interrupt and the input control of INT pin. Set the contents of this register through register A with the TI1A instruction. In addition, the TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 20 Return source and return condition

F	Return source	Return condition	Remarks
	Port P00–P03 Port P20, P21 Port D2, D3	Return by an external "L" level input.	The key-on wakeup function can be selected by one port unit. Set the port using the key-on wakeup function to "H" level before going into the RAM back-up state.
al wakeup signal		Return by an external "H" level or "L" level input, or falling edge ("H"→"L") or rising edge ("L"→"H").	The key-on wakeup function can be selected by one port unit. Select the return level ("L" level or "H" level) and return condition (level or edge) with the register L1 according to the external state before going into the RAM back-up state. Before going into the RAM backup state, set an opposite level of the selected return level (edge) to the port using the key-on wakeup function.
External	INT pin	Return by an external "H" level or "L" level input, or falling edge ("H"→"L") or rising edge ("L"→"H"). When the return level is input, the EXF0 flag is not set.	The key-on wakeup function can be selected by one port unit. Select the return level ("L" level or "H" level) with the register I1 and return condition (level or edge) with the register L1 according to the external state before going into the RAM back-up state.

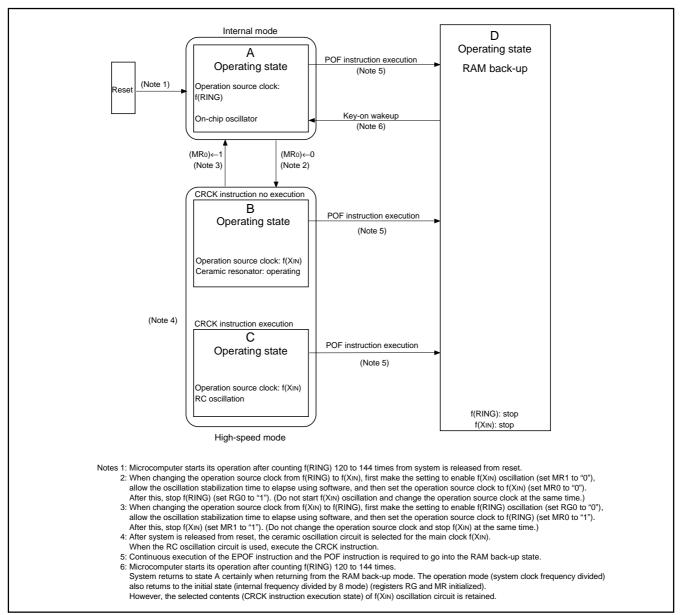


Fig. 46 State transition

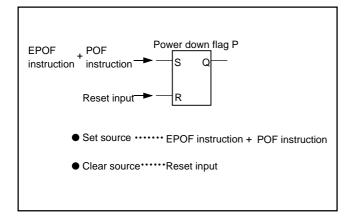


Fig. 47 Set source and clear source of the P flag

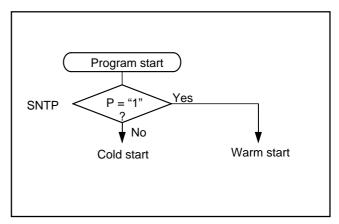


Fig. 48 Start condition identified example using the SNZP instruction

Table 21 Key-on wakeup control register

	Key-on wakeup control register K0		reset : 00002	at RAM back-up : state retained	R/W TAK0/TK0A
K03	Port P03 key-on wakeup	0 Key-on wakeup not		t used	
KU3	control bit	1	Key-on wakeup us	ed	
K02	Port P02 key-on wakeup		Key-on wakeup not used		
KU2	control bit	1	Key-on wakeup used		
KO.	Port P01 key-on wakeup	0	0 Key-on wakeup not used		
K01	control bit	1	Key-on wakeup used		
K0°	Port P00 key-on wakeup	0	Key-on wakeup not used		
K00	control bit	1	Key-on wakeup used		

	Key-on wakeup control register K1		reset: 00002	at RAM back-up : state retained	R/W TAK1/TK1A
K13	Port P13 key-on wakeup	0	Key-on wakeup no	ot used	
K13	control bit	1 Key-on wakeup used			
1/40	Port P12 key-on wakeup	0	Key-on wakeup not used		
K12	control bit	1	Key-on wakeup us	ısed	
174.	Port P11 key-on wakeup	0	Key-on wakeup not used		
K11	K11 control bit		Key-on wakeup used		
1/4 a	Port P10 key-on wakeup	0 Key-on wakeup no		ot used	
K1 0	control bit	1	Key-on wakeup us	sed	

Key-on wakeup control register K2		at reset : 00002		at RAM back-up : state retained	R/W TAK2/TK2A
K23	Port D3 key-on wakeup	0	Key-on wakeup no	ot used	
N23	control bit	1 Key-on wakeup us		sed	
K22	Port D2 key-on wakeup	0	Key-on wakeup not used		
NZ2	control bit	1	Key-on wakeup us	sed	
I/O+	Port P21 key-on wakeup	0	Key-on wakeup not used		
K21	control bit	1	Key-on wakeup us	sed	
K20	Port P20 key-on wakeup	0 Key-on wakeup not used			
N20	control bit	1	Key-on wakeup us	sed	

	Key-on wakeup control register L1		reset : 00002	at RAM back-up : state retained	R/W TAL1/TL1A		
L13	Ports P10–P13 return condition selection	0	Return by level				
LIS	bit	1 Return by edge					
1.40	Ports P10-P13 valid waveform/	0	Falling waveform/"L" level				
L12	level selection bit	1	Rising waveform/"H" level				
1.44	INT pin	0	Return by level				
L11	return condition selection bit	1	Return by edge				
140	INT pin	0 Key-on wakeup not		used			
L10	key-on wakeup control bit	1	Key-on wakeup use	ed			

Notes 1: "R" represents read enabled, and "W" represents write enabled.

Table 22 Pull-up control register and interrupt control register

Pull-up control register PU0		at reset : 00002		at RAM back-up : state retained	R/W
	Port P03 pull-up transistor	0	Pull-up transistor (TAPU0/TPU0A
PU03			· ·		
1 005	control bit	1	Pull-up transistor (NC	
DLIO	Port P02 pull-up transistor	0	Pull-up transistor OFF		
PU02	control bit	1	Pull-up transistor (NC	
PU01	Port P01 pull-up transistor	0	Pull-up transistor (OFF	
P001	control bit	1	Pull-up transistor ON		
PU00	Port P00 pull-up transistor	0 Pull-up transistor OFF			
F 000	control bit	1	Pull-up transistor (ON	

Pull-up control register PU1		at reset : 00002		at RAM back-up : state retained	R/W TAPU1/TPU1A
PU13	Port P13 pull-up transistor	0	Pull-up transistor (OFF	
PU13	control bit	1	Pull-up transistor (NC	
DUIA	Port P12 pull-up transistor	0	Pull-up transistor OFF		
PU12	control bit	1	Pull-up transistor (NC	
DUA	Port P11 pull-up transistor	0	Pull-up transistor (OFF	
PU11	PU11 control bit		Pull-up transistor ON		
DUIA	Port P10 pull-up transistor	0 Pull-up transistor OFF			
PU10	control bit	1	Pull-up transistor (NC	

Pull-up control register PU2		at reset : 00002		at RAM back-up : state retained	R/W TAPU2/TPU2A
PU23	Port D ₃ pull-up transistor	0	Pull-up transistor	OFF	
PU23	control bit	1	Pull-up transistor ON		
PU22	Port D2 pull-up transistor	0	Pull-up transistor OFF		
PU22	control bit	1	Pull-up transistor	ON	
DUG	Port P21 pull-up transistor	0	Pull-up transistor	OFF	
PU21	PU21 control bit		Pull-up transistor ON		
PU20	Port P20 pull-up transistor	0	0 Pull-up transistor OFF		
PU20	control bit	1	Pull-up transistor	ON	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- · On-chip oscillator (internal oscillator)
- · Ceramic oscillation circuit
- · RC oscillation circuit
- Multi-plexer (clock selection circuit)
- · Frequency divider
- Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.

Figure 49 shows the structure of the clock control circuit.

The 4508 Group operates by the on-chip oscillator clock (f(RING)) which is the internal oscillator after system is released from reset.

Also, the ceramic resonator or the RC oscillation can be used for the source oscillation (f(XIN)) of the 4508 Group.

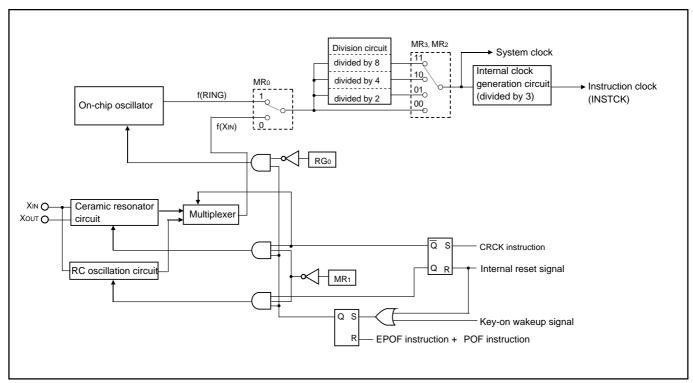


Fig. 49 Clock control circuit structure

(1) On-chip oscillator operation

After system is released from reset, the MCU starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

(2) Main clock generating circuit (f(XIN))

The ceramic resonator or RC oscillation can be used for the main clock of this product.

After system is released from reset, the ceramic oscillation is active for main clock.

The ceramic oscillation is invalid and the RC oscillation circuit is valid with the CRCK instruction.

Execute the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

The execution of the CRCK instruction can be valid only once.

Register MR controls the enable/disable of the oscillation and the selection of the operation source clock.

Also, when the MCU operates only by the on-chip oscillator without using main clock f(XIN), connect XIN pin to Vss and leave XOUT pin open, and do not execute the CRCK instruction (Figure 51).

(3) Ceramic resonator

When the ceramic resonator is used as the main clock (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. A feedback resistor is built in between pins XIN and XOUT (Figure 52).

Do not execute the CRCK instruction.

Set "0" to bit 0 of register MR after the oscillation stabilizing wait time is generated by software to select the clock generated by the ceramic oscillation circuit for the source oscillation clock.

(4) RC oscillation

When the RC oscillation is used as the main clock (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the CRCK instruction (Figure 53).

The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the recommended operating condition of the frequency limits.

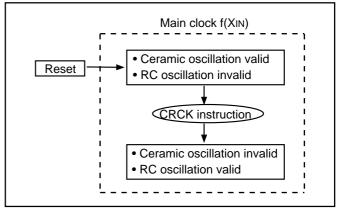


Fig. 50 Switch to ceramic oscillation/RC oscillation

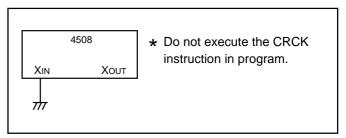


Fig. 51 Handling of XIN and XOUT when main clock is not used

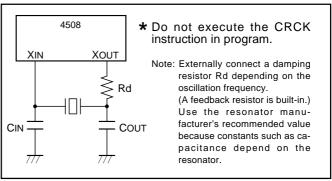


Fig. 52 Ceramic resonator external circuit

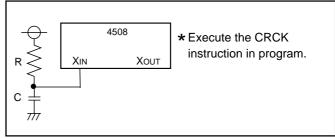


Fig. 53 External RC circuit

(5) External clock

When the external signal clock is used for the main clock (f(XIN)), connect the XIN pin to the clock source and leave XOUT pin open (Figure 54). Do not execute the CRCK instruction in program. Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition). Also, note that the RAM back-up mode (POF instruction) cannot be used when using the external clock.

(6) Clock control register MR

Register MR controls the selection of operation mode and the operation source clock, and enable/stop of main clock. Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.

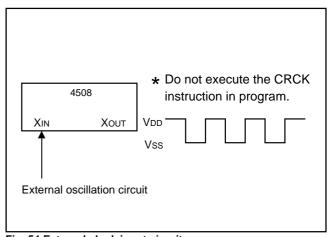


Fig. 54 External clock input circuit

(7) Clock control register RG

Register RG controls the on-chip oscillator. Set the contents of this register through register A with the TRGA instruction.

Table 23 Clock control register MR

Table 23 Clock control register MR								
	Clock control register MR at		at	reset : 11012	at RAM back-up : 11012	R/W TAMR/TMRA		
		MRз	MR2		Operation mode			
MR3	Operation mode selection bits	0	0	Through mode (free	uency not divided)			
		0	1	Frequency divided by 2 mode				
MR2		1	0	Frequency divided by 4 mode				
		1	1	Frequency divided by 8 mode				
MR1	Main clock f(XIN) control bit (Notes 2, 5)	()	Main clock (f(XIN))	oscillation enabled			
IVIIXI		1		Main clock (f(XIN)) oscillation stop				
MR0	Operation source clock selection bit (Notes 3, 5)	C)	Main clock (f(XIN))				
IVIR0	Operation source clock selection bit (Notes 3, 5)	1		On-chip oscillator clock (f(RING))				

	Clock control register RG	at reset : 02		at RAM back-up : 02	W TRGA
RG ₀	On-chip oscillator (f(RING)) control bit	0	On-chip oscillator (f(RING)) oscillation enabled	
KG0	(Note 4)	1	On-chip oscillator (f(RING)) oscillation stop	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: Main clock cannot be stopped when the main clock is selected for the operation source clock.
- 3: The stopped clock cannot be selected for the operation source clock. In order to switch the operation source clock, generate the oscillation stabilizing wait time by software first and set the oscillation of the destination clock to be enabled.
- 4: On-chip oscillator cannot be stopped when the on-chip oscillator is selected for the operation source clock.
- 5: When changing the setting of MR1 and MR0 from "00" to "11", make settings in the sequence "00" → "01" → "11". When changing the setting of MR1 and MR0 from "11" to "0", make settings in the sequence "11" → "01" → "00".

QzROM Writing Mode

In the QzROM writing mode, the user ROM area can be rewritten while the microcomputer is mounted on-board by using a serial programmer which is applicable for this microcomputer.

Table 24 lists the pin description (QzROM writing mode) and Figure 55 shows the pin connections.

Refer to Figure 56 for examples of a connection with a serial programmer.

Contact the manufacturer of your serial programmer for serial programmer. Refer to the user's manual of your serial programmer for details on how to use it.

Table 24 Pin description (QzROM writing mode)

Pin	Name	I/O	Function
VDD	Power source	_	Power supply voltage pin.
Vss	GND	_	• GND pin.
CNVss	VPP input	_	 QzROM programmable power source pin. VPP input is possible with Vss connected via a resistor of about 5 kΩ.
P20/AIN0	SDA input/output	I/O	QzROM serial data I/O pin.
P21/AIN1	SCLK input	Input	QzROM serial clock input pin.
D3/AIN5	PGM input	Input	QzROM read/program pulse input pin.
RESET	Reset input	Input	Reset input pin. Input "L" level signal.
XIN	Clock input	_	• Either connect an oscillation circuit or connect XIN pin to Vss and leave the
Хоит	Clock output	_	Xout pin open.
Do, D1, D2/AIN4, P00/SIN, P01/SOUT, P02/SCK, P03, P10, P11/CNTR1, P12/CNTR0, P13/INT	I/O port	I/O	Input "H" or "L" level signal or leave the pin open.

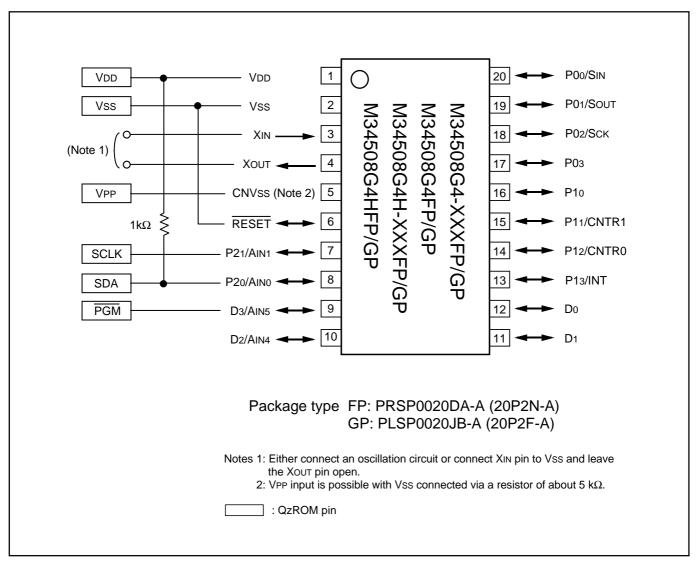


Fig. 55 Pin connection diagram

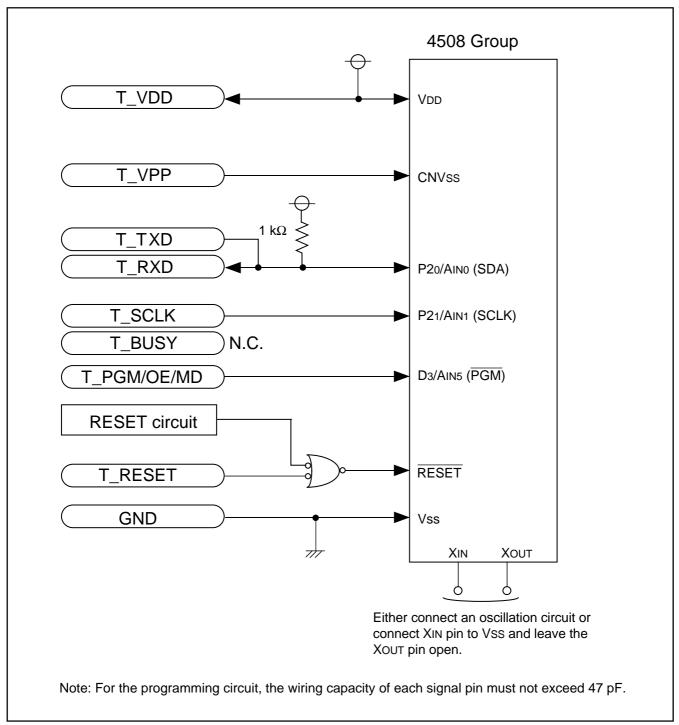


Fig. 56 When using programmer of Suisei Electronics System Co., LTD, connection example

DATA REQUIRED FOR QZROM WRITING ORDERS

- 1. QzROM Writing Confirmation Form*
- 2. Mark Specification Form*
- 3. ROM data.....Mask file
- * For the QzROM writing confirmation form and the mark specification form, refer to the "Renesas Technology Corp." Homepage (http://www.renesas.com/homepage.jsp).

Note that we cannot deal with special font marking (customer's trademark etc.) in QzROM microcomputer.

LIST OF PRECAUTIONS

Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. 0.1 μF) between pins VDD and Vss at the shortest distance,
- equalize its wiring in width and length, and
- use relatively thick wire.

CNVss pin is also used as VPP pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about 5 k Ω (connect this resistor to CNVss/VPP pin as close as possible).

② Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.

In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

③ Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

4 Register initial values 2

The initial value of the following registers are undefined at RAM back-up. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

⑤ Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

(Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

Multifunction

- The input/output of P0o can be used even when SIN is used. Be careful when using inputs of both SIN and P0o since the input threshold value of SIN pin is different from that of port P0o.
- The input of P01 can be used even when SouT is used.
- The input of P02 can be used even when SCK is used. Be careful when using inputs of both SCK and P02 since the input threshold value of SCK pin is different from that of port P02.
- The input of P11 can be used even when CNTR1 (output) is selected.

The input/output of P11 can be used even when CNTR1 (input) is selected. Be careful when using inputs of both CNTR1 and P11 since the input threshold value of CNTR1 pin is different from that of port P11.

- The input of P12 can be used even when CNTR0 (output) is selected.

The input/output of P12 can be used even when CNTR0 (input) is selected. Be careful when using inputs of both CNTR0 and P12 since the input threshold value of CNTR0 pin is different from that of port P12.

- The input/output of P13 can be used even when INT is used. Be careful when using inputs of both INT and P13 since the input threshold value of INT pin is different from that of port P13.
- The input/output of P20, P21, D2, D3 can be used even when AIN0, AIN1, AIN4 or AIN5 are used.

® Power-on reset (only for H version)

When the built-in power-on reset circuit is used, set the time for the supply voltage to rise from 0 V to the minimum voltage of recommended operating conditions to 100 $\,\mu s$ or less.

If the rising time exceeds 100 μ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

9 POF instruction

When the POF instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state.

Note that system cannot enter the RAM back-up state when executing only the POF instruction.

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF instruction continuously.

10 P13/INT pin

Note [1] on bit 3 of register I1

When the input of the INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 57⁽¹⁾) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 57²).

Also set the NOP instruction for the case when a skip is per-

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 57³).

```
ΙΑ
           ; (XXX02)
TV1A
           ; The SNZ0 instruction is valid ..... ①
LA
           : (1XXX2)
TI1A
           ; Control of INT pin input is changed
NOP
           SNZ0
           ; The SNZ0 instruction is executed
           (EXF0 flag cleared)
NOP
           ...... 3
     X: these bits are not used here.
```

Fig. 57 External 0 interrupt program example-1

- 2 Note [2] on bit 3 of register I1
 - When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.
- When the INT pin input is disabled (register I13 = "0"), set the keyon wakeup of INT pin to be invalid (register L10 = "0") before system enters to the RAM back-up mode. (refer to Figure 58①).

```
LA 0 ; (XXX02)
TI1A ; INT key-on wakeup disabled ...........①
DI
EPOF
POF2 ; RAM back-up

X: these bits are not used here.
```

Fig. 58 External 0 interrupt program example-2

Note [3] on bit 2 of register I1

When the interrupt valid waveform of the P13/INT pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 59^①) and then, change the bit 2 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 59²).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 59³).

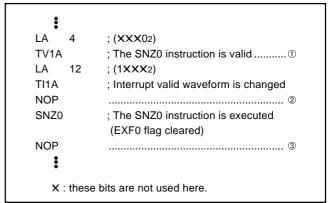


Fig. 59 A/D conversion interrupt program example

① Prescaler

Stop prescaler counting and then execute the TABPS instruction to read its data.

Stop prescaler counting and then execute the TPSAB instruction to write data to prescaler.

② Timer count source

Stop timer 1 or 2 counting to change its count source.

® Reading the count value

Stop timer 1 or 2 counting and then execute the TAB1 or TAB2 instruction to read its data.

Writing to the timer

Stop timer 1 or 2 counting and then execute the T1AB, T1R1L, T2AB or T2R2L instruction to write data to timer.

Writing to reload register

In order to write a data to the reload register R1H while the timer 1 is operating, execute the T1HAB instruction except a timing of the timer 1 underflow.

In order to write a data to the reload register R2H while the timer 2 is operating, execute the T2HAB instruction except a timing of the timer 2 underflow.

Prescaler, timer 1 and timer 2 count start timing and count time when operation starts

Count starts from the first rising edge of the count source (2) after prescaler and timer operations start (1).

Time to first underflow (3) is shorter (for up to 1 period of the count source) than time among next underflow (4) by the timing to start the timer and count source operations after count starts.

When selecting CNTR input as the count source of timer, timer operates synchronizing with the count edge (falling edge or rising edge) of CNTR input selected by software.

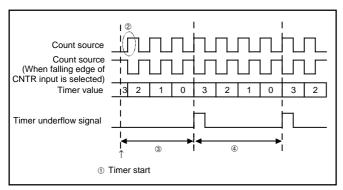


Fig. 60 Timer count start timing and count time when operation starts

© PWM signal (PWM1, PWM2)

If the timer 1 count stop timing and the timer 1 underflow timing overlap during output of the PWM1 signal, a hazard may occur in the PWM1 output waveform.

If the timer 2 count stop timing and the timer 2 underflow timing overlap during output of the PWM2 signal, a hazard may occur in the PWM2 output waveform.

®Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function.
- The contents of WDF1 flag and timer WDT are initialized at the RAM back-up mode.
- When using the watchdog timer and the RAM back-up mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the RAM back-up state.

Also, set the NOP instruction after the WRST instruction, for the case when a skip is performed with the WRST instruction.

[®]Clock control

When the RC oscillation is used as the main clock f(XIN), execute the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

The oscillation circuit by the CRCK instruction can be selected only once. When the CRCK instruction is not executed, the ceramic oscillation is selected for the main clock f(XIN).

Also, when the MCU operates only by the on-chip oscillator without using main clock f(XIN), connect XIN pin to Vss and leave XOUT pin open, and do not execute the CRCK instruction.

In order to switch the operation source clock (f(RING)) or f(XIN)), generate the oscillation stabilizing wait time by software first and set the oscillation of the destination clock to be enabled.

Registers RG and MR are initialized when system returns from RAM back-up mode.

However, the selected contents (CRCK instruction execution state) of main clock (f(XIN)) oscillation circuit is retained.

On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products. Also, when considering the oscillation stabilize wait time for switching clock, be careful that the variable frequency of the on-chip oscillator clock.

® External clock

When the external clock is used for the main clock (f(XIN)), connect the XIN pin to the clock source and leave XOUT pin open. Do not execute the CRCK instruction in program.

Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition)

Also, note that the RAM back-up mode (POF instruction) cannot be used when using the external clock.

2 Notes for the use of A/D conversion 1

- TALA instruction
 - When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."
- Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with the bit 3 of register Q1 while the A/D converter is operating.
- Clear the bit 2 of register V2 to "0" to change the operating mode from the comparator mode to A/D conversion mode.
- The A/D conversion completion flag (ADF) may be set when the
 operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to
 the bit 3 of register Q1, and execute the SNZAD instruction to clear
 the ADF flag.

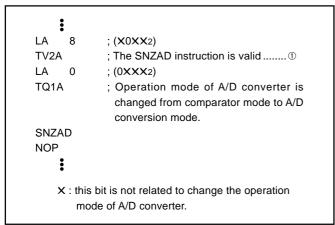


Fig. 61 External 0 interrupt program example-3

® Notes for the use of A/D conversion 2

Each analog input pin is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/discharge noise is generated and the sufficient A/D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor (0.01 μ F to 1 μ F) to analog input pins (Figure 62).

When the overvoltage applied to the A/D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 61. In addition, test the application products sufficiently.

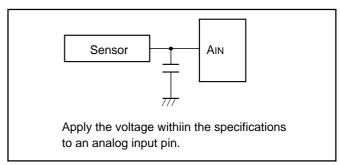


Fig. 62 Analog input external circuit example-1

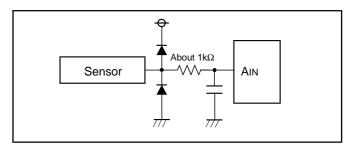


Fig. 63 Analog input external circuit example-2

- (1) Be careful not to apply overvoltage to MCU. The contents of QzROM may be overwritten because of overvoltage. Take care especially at turning on the power.
- (2) As for the product shipped in blank, Renesas does not perform the writing test to user ROM area after the assembly process though the QzROM writing test is performed enough before the assembly process. Therefore, a writing error of approx.0.1 % may occur. Moreover, please note the contact of cables and foreign bodies on a socket, etc. because a writing environment may cause some writing errors.
- Notes On ROM Code Protect
 (QzROM product shipped after writing)

As for the QzROM product shipped after writing, the ROM code protect is specified according to the ROM option setup data in the mask file which is submitted at ordering.

The ROM option setup data in the mask file is "0016" for protect enabled or "FF16" for protect disabled.

Note that the mask file which has nothing at the ROM option data or has the data other than "0016" and "FF16" can not be accepted.

NOTES ON NOISE

Countermeasures against noise are described below.

The following countermeasures are effective against noise in theory, however, it is necessary not only to take measures as follows but to evaluate before actual use.

1. Shortest wiring length

(1) Wiring for RESET pin

Make the length of wiring which is connected to the RESET pin as short as possible. Especially, connect a capacitor across the RESET pin and the Vss pin with the shortest possible wiring.

<Reason>

In order to reset a microcomputer correctly, 1 machine cycle or more of the width of a pulse input into the RESET pin is required.

If noise having a shorter pulse width than this is input to the RESET input pin, the reset is released before the internal state of the microcomputer is completely initialized.

This may cause a program runaway.

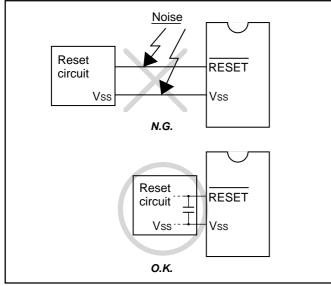


Fig. 64 Wiring for the RESET pin

- (2) Wiring for clock input/output pins
- Make the length of wiring which is connected to clock I/O pins as short as possible.
- Make the length of wiring across the grounding lead of a capacitor which is connected to an oscillator and the Vss pin of a microcomputer as short as possible.
- Separate the Vss pattern only for oscillation from other Vss patterns.

<Reason>

If noise enters clock I/O pins, clock waveforms may be deformed. This may cause a program failure or program runaway. Also, if a potential difference is caused by the noise between the Vss level of a microcomputer and the Vss level of an oscillator, the correct clock will not be input in the microcomputer.

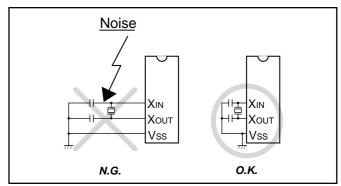


Fig. 65 Wiring for clock I/O pins

(3) Wiring to CNVss pin

Connect CNVss pin to a GND pattern at the shortest distance.

The GND pattern is required to be as close as possible to the GND supplied to Vss.

In order to improve the noise reduction, to connect a 5 $k\Omega$ resistor serially to the CNVss pin - GND line may be valid.

As well as the above-mentioned, in this case, connect to a GND pattern at the shortest distance. The GND pattern is required to be as close as possible to the GND supplied to Vss.

<Reason>

The CNVss pin of the QzROM is the power source input pin for the built-in QzROM. When programming in the built-in QzROM, the impedance of the CNVss pin is low to allow the electric current for writing flow into the QzROM. Because of this, noise can enter easily. If noise enters the CNVss pin, abnormal instruction codes or data are read from the built-in QzROM, which may cause a program runaway.

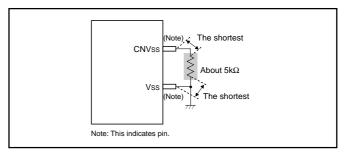


Fig. 66 Wiring for the CNVss pin of the QzPROM

2. Connection of bypass capacitor across $\ensuremath{\mathsf{VSS}}$ line and $\ensuremath{\mathsf{VDD}}$ line

Connect an approximately 0.1 μF bypass capacitor across the Vss line and the VDD line as follows:

- Connect a bypass capacitor across the Vss pin and the VDD pin at equal length.
- Connect a bypass capacitor across the Vss pin and the VDD pin with the shortest possible wiring.
- Use lines with a larger diameter than other signal lines for Vss line and VDD line.
- Connect the power source wiring via a bypass capacitor to the Vss pin and the VDD pin.

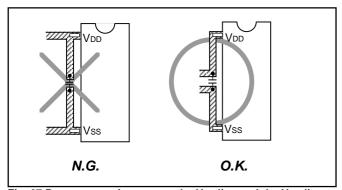


Fig. 67 Bypass capacitor across the Vss line and the VDD line

3. Wiring to analog input pins

- Connect an approximately 100 Ω to 1 k Ω resistor to an analog signal line which is connected to an analog input pin in series. Besides, connect the resistor to the microcomputer as close as possible.
- Connect an approximately 1000 pF capacitor across the Vss pin and the analog input pin. Besides, connect the capacitor to the Vss pin as close as possible. Also, connect the capacitor across the analog input pin and the Vss pin at equal length.

<Reason>

Signals which is input in an analog input pin (such as an A/D converter/comparator input pin) are usually output signals from sensor. The sensor which detects a change of event is installed far from the printed circuit board with a microcomputer, the wiring to an analog input pin is longer necessarily. This long wiring functions as an antenna which feeds noise into the microcomputer, which causes noise to an analog input pin.

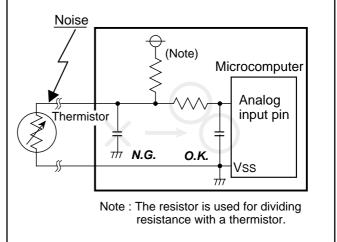


Fig. 68 Analog signal line and a resistor and a capacitor

4. Oscillator concerns

Take care to prevent an oscillator that generates clocks for a microcomputer operation from being affected by other signals.

(1) Keeping oscillator away from large current signal lines Install a microcomputer (and especially an oscillator) as far as possible from signal lines where a current larger than the tolerance of current value flows.

<Reason>

In the system using a microcomputer, there are signal lines for controlling motors, LEDs, and thermal heads or others. When a large current flows through those signal lines, strong noise occurs because of mutual inductance.

(2) Installing oscillator away from signal lines where potential levels change frequently

Install an oscillator and a connecting pattern of an oscillator away from signal lines where potential levels change frequently. Also, do not cross such signal lines over the clock lines or the signal lines which are sensitive to noise.

<Reason>

Signal lines where potential levels change frequently (such as the CNTR pin signal line) may affect other lines at signal rising edge or falling edge. If such lines cross over a clock line, clock waveforms may be deformed, which causes a microcomputer failure or a program runaway.

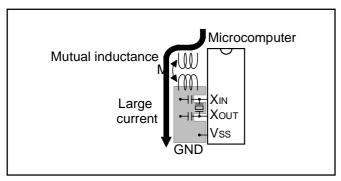


Fig. 69 Wiring for a large current signal line

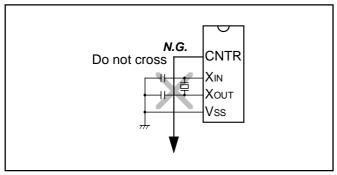


Fig. 70 Wiring to a signal line where potential levels change frequently

(3) Oscillator protection using Vss pattern

As for a two-sided printed circuit board, print a Vss pattern on the underside (soldering side) of the position (on the component side) where an oscillator is mounted.

Connect the Vss pattern to the microcomputer Vss pin with the shortest possible wiring. Besides, separate this Vss pattern from other Vss patterns.

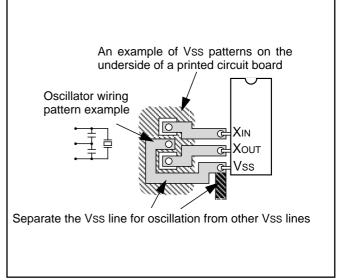


Fig. 71 Vss pattern on the underside of an oscillator

5. Setup for I/O ports

Setup I/O ports using hardware and software as follows:

<Hardware>

• Connect a resistor of 100 Ω or more to an I/O port in series.

<Software>

- As for an input port, read data several times by a program for checking whether input levels are equal or not.
- As for an output port or an I/O port, since the output data may reverse because of noise, rewrite data to its port latch at fixed periods.
- Rewrite data to pull-up control registers at fixed periods.

6. Providing of watchdog timer function by software

If a microcomputer runs away because of noise or others, it can be detected by a software watchdog timer and the microcomputer can be reset to normal operation. This is equal to or more effective than program runaway detection by a hardware watchdog timer. The following shows an example of a watchdog timer provided by software. In the following example, to reset a microcomputer to normal operation, the main routine detects errors of the interrupt processing routine and the interrupt processing routine detects errors of the main routine.

This example assumes that interrupt processing is repeated multiple times in a single main routine processing.

<The main routine>

 Assigns a single word of RAM to a software watchdog timer (SWDT) and writes the initial value N in the SWDT once at each execution of the main routine. The initial value N should satisfy the following condition:

 $N+1 \ge (Counts \ of \ interrupt \ processing \ executed \ in each \ main \ routine)$

As the main routine execution cycle may change because of an interrupt processing or others, the initial value N should have a margin.

- Watches the operation of the interrupt processing routine by comparing the SWDT contents with counts of interrupt processing after the initial value N has been set.
- Detects that the interrupt processing routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:

If the SWDT contents do not change after interrupt processing.

- <The interrupt processing routine>
- Decrements the SWDT contents by 1 at each interrupt processing.
- Determines that the main routine operates normally when the SWDT contents are reset to the initial value N at almost fixed cycles (at the fixed interrupt processing count).
- Detects that the main routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:

If the SWDT contents are not initialized to the initial value N but continued to decrement and if they reach 0 or less.

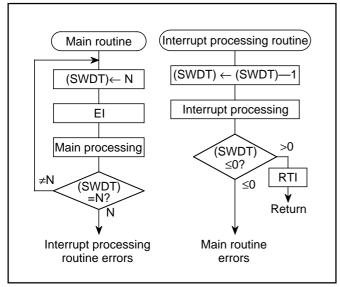


Fig. 72 Watchdog timer by software

CONTROL REGISTERS

	Interrupt control register V1		reset : 00002	at RAM back-up : 00002	R/W TAV1/TV1A	
V13	V/40 Times O interment analyse hit		Interrupt disabled (SNZT2 instruction is valid)		
V 13	V13 Timer 2 interrupt enable bit	1	Interrupt enabled (SNZT2 instruction is invalid)		
\/10	V12 Timer 1 interrupt enable bit	0	Interrupt disabled (SNZT1 instruction is valid)			
V 12	Timer Timerrupt enable bit	1	Interrupt enabled (SNZT1 instruction is invalid)		
V11	Not used	0	This bit has no function, but read/write is enabled.			
V 11	Not used	1	This bit has no run	This bit has no function, but read/write is enabled.		
V10	External 0 interrupt anable hit	0	Interrupt disabled (SNZ0 instruction is valid)		
V 10	External 0 interrupt enable bit	1	Interrupt enabled (SNZ0 instruction is invalid)		

Interrupt control register V2		at reset : 00002		at RAM back-up : 00002	R/W TAV2/TV2A
1/20	Serial interface interrupt enable hit	0	Interrupt disabled ((SNZSI instruction is valid)	·
V23	V23 Serial interface interrupt enable bit		Interrupt enabled (SNZSI instruction is invalid)		
1/20	V22 A/D interrupt enable bit	0	Interrupt disabled (SNZAD instruction is valid)		
V Z 2	Mb interrupt enable bit	1	Interrupt enabled (SNZAD instruction is invalid)		
V/04	Not used	0	This bit has no function, but read/write is enabled.		
V21	Not used	1	This bit has no function, but read/write is enabled.		
\/O ₀	No. Not wood	0	This bit has no function, but read/write is enabled.		
V20 Not used	Not used	1			

Interrupt control register I1		at reset : 00002		at RAM back-up : state retained	R/W TAI1/TI1A
110	INT pin input control bit (Note 2)	0	INT pin input disab	led	
I1 3	in i pin input control bit (note 2)	1	INT pin input enab	led	
l12	Interrupt valid waveform for INT pin/	0	th the SNZI0		
112	return level selection bit (Note 2)	1	Rising waveform ("H" level of INT pin is recognized with the SNZI0 instruction)/"H" level		
114	INT pip adge detection circuit central bit	0	One-sided edge de	etected	
111	In I	1	Both edges detected	ed	
110	INT pin	0	Disabled		
I1 0	timer 1 control enable bit	1	Enabled		

Clock control register MR		at reset : 11012			at RAM back-up : 11012	R/W TAMR/TMRA	
MR3	Operation mode selection bits	MRз	MR2		Operation mode		
		0	0	Through mode (frequency not divided)			
MR2		0	1	Frequency divided by 2 mode			
		1	0	Frequency divided by 4 mode			
		1	1	Frequency divided by 8 mode			
MR1	Main clock f(XIN) control bit (Note 3)	0		Main clock (f(XIN)) oscillation enabled			
		1		Main clock (f(XIN)) oscillation stop			
MR0	Operation source clock selection bit (Note 4)	0		Main clock (f(XIN))			
		1		On-chip oscillator clock (f(RING))			

Clock control register RG		at reset : 02		at RAM back-up : 02	W TRGA
RG0	On-chip oscillator (f(RING)) control bit (Note 5)	0	On-chip oscillator (f(RING)) oscillation enabled		
		1	On-chip oscillator (f(RING)) oscillation stop		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set.
- ${\bf 3:}\ Main\ clock\ cannot\ be\ stopped\ when\ the\ main\ clock\ is\ selected\ for\ the\ operation\ source\ clock.$
- 4: The stopped clock cannot be selected for the operation source clock. In order to switch the operation source clock, generate the oscillation stabilizing wait time by software first and set the oscillation of the destination clock to be enabled.
- 5: On-chip oscillator cannot be stopped when the on-chip oscillator is selected for the operation source clock.

	Timer control register PA	í	at reset : 02	at RAM back-up : 02	W TPAA
PA ₀	PAn Prescaler control bit		Stop (state initialize	ed)	
PA0	Frescaler control bit	1	Operating		

	Timer control register W1	at r		reset : 00002	at RAM back-up : 00002	R/W TAW1/TW1A
W13	PWM1 function control bit	()	PWM1 function inv	alid	
VVIS	1 WWT function control bit	1		PWM1 function val	id	
W12	Timer 1 control bit	0		Stop (state retained)		
VV 12	Timer i control bit	1		Operating		
		W11	W10		Count source	
W11		0	0	PWM2 signal		
	Timer 1 count source selection bits	0	1	Prescaler output (C	DRCLK)	
W10		1	0	CNTR1 input		
		1	1	On-chip oscillator of	clock (f(RING))	

	Timer control register W2	at r		reset : 00002	at RAM back-up : 00002	R/W TAW2/TW2A
W23	PWM2 function control bit	0 1		PWM2 function inv	valid	
VV23	F WWZ Turiction control bit			PWM2 function va	lid	
W22	Timer 2 control bit	0		Stop (state retained)		
VVZ2	Timer 2 control bit	_	1	Operating		
		W21	W20		Count source	
W21		0	0	Timer 1 underflow	signal (T1UDF)	
	Timer 2 count source selection bits		1	Prescaler output (ORCLK)		
W20		1	0	CNTR0 input		
		1	1	System clock (STC	K)	

	Timer control register W5	at	reset : 00002	at RAM back-up : state retained	R/W TAW5/TW5A
W53	P1a/CNTP0 pin function solection bit	0	P12 (I/O) / CNTR0	(input)	•
VV 33	W53 P12/CNTR0 pin function selection bit		P12 (input) /CNTR	0 (I/O)	
W52	Timer 1 count auto-stop circuit	0	Count auto-stop ci	rcuit not selected	
VV 32	selection bit (Note 2)	1	Count auto-stop ci	circuit selected	
W51	Timer 1 count start synchronous circuit	0	Count start synchro	nchronous circuit not selected	
VVJI	selection bit (Note 3)	1	Count start synchro	onous circuit selected	
W50	WES ONTRO the instant and a description bit	0	Falling edge		
VV30	CNTR0 pin input count edge selection bit	1	Rising edge		

	Timer control register W6 at a		reset : 00002	at RAM back-up : state retained	R/W TAW6/TW6A
W63	P14/CNTP1 pin function soloction bit	0	P11 (I/O) / CNTR1	(input)	
VV03	W63 P11/CNTR1 pin function selection bit		P11 (input) /CNTR	1 (I/O)	
W62	CNTR 1 pin output auto-control circuit	0	Output auto-contro	l circuit not selected	
VV02	selection bit	1	Output auto-contro	ol circuit selected	
W61	Timer 2	0	INT pin input perior	d count circuit not selected	
VVOI	INT pin input period count circuit selection bit	1	INT pin input period	d count circuit selected	
W60	CNTD4 nin input count adap calcation hit	0	Falling edge		
*****	CNTR1 pin input count edge selection bit	1	Rising edge		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} This function is valid only when the INT pin/timer 1 control is enabled (I10="1") and the timer 1 count start synchronous circuit is selected (W51="1").

3: This function is valid only when the INT pin/timer 1 control is enabled (I10="1").

A/D control register Q1		at rese		reset	: 00002	at RAM back-up : state retained	R/W TAQ1/TQ1A
Q13	A/D operation mode selection bit	()	A/D	conversion m	ode	
Q13	A/D operation mode selection bit	1		Cor	mparator mode		
		Q12	Q11	Q10		Selected pins	
Q12		0	0	0	AIN0		
		0	0	1	AIN1		
		0	1	0	Not available		
Q11	Analog input pin selection bits	0	1	1	Not available		
		1	0	0	AIN4		
		1	0	1	AIN5		
Q10		1	1	0	Not available		
		1	1	1	Not available		

	Serial interface control register J1		at reset : 00002		at RAM back-up : state retained	R/W TAJ1/TJ1A
		J13	J12		Synchronous clock	
J13	J13 Serial interface synchronous clock selection bits	0	0	Instruction clock (II	NSTCK) divided by 8	
		0	1	Instruction clock (II	NSTCK) divided by 4	
J12		1	0	Instruction clock (II	NSTCK) divided by 2	
		1	1	External clock (Sci	< input)	
		J11	J1 0		Port function	
J11		0	0	P00, P01, P02 sele	cted/SIN, SOUT, SCK not selected	
	Serial interface port function selection bits	0	1	P00, Sout, Sck se	lected/SIN, P01, P02 not selected	
J1 0	·	1	0	SIN, P01, SCK selec	cted/P00, SOUT, P02 not selected	
		1	1	SIN, SOUT, SCK sel	ected/P00, P01, P02 not selected	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

Key-on wakeup control register K0		at reset : 00002		at RAM back-up : state retained	R/W TAK0/TK0A
K03	Port P03 key-on wakeup	0	Key-on wakeup no	nt used	
K03	control bit	1	Key-on wakeup us	ed	
K02	Port P02 key-on wakeup	0 Key-on wakeup no		not used	
K02	control bit	1	Key-on wakeup us	used	
K01	Port P01 key-on wakeup	0	Key-on wakeup no	ot used	
KU1	control bit	1	Key-on wakeup us	ed	
K00	Port P00 key-on wakeup	0	Key-on wakeup no	ot used	
K00	control bit	1	Key-on wakeup us	ed	

	Key-on wakeup control register K1		reset : 00002	at RAM back-up : state retained	R/W TAK1/TK1A
K13	Port P13 key-on wakeup	0	Key-on wakeup no	ot used	
K 13	control bit	1	Key-on wakeup us	sed	
1/40	Port P12 key-on wakeup	0	Key-on wakeup no	ot used	
K12	control bit	1	Key-on wakeup us	used	
1/4 /	Port P11 key-on wakeup	0	Key-on wakeup no	not used	
K11	control bit	1	Key-on wakeup us	sed	
V40	Port P1 ₀ key-on wakeup	0	Key-on wakeup no	ot used	
K1 0	control bit	1	Key-on wakeup us	sed	

Key-on wakeup control register K2		at reset : 00002		at RAM back-up : state retained	R/W TAK2/TK2A
K23	Port D ₃ key-on wakeup	0	Key-on wakeup no	ot used	
N23	control bit	1	Key-on wakeup us	sed	
K22	Port D2 key-on wakeup	0 Key-on wakeup no		not used	
NZ2	control bit	1	Key-on wakeup us	used	
K21	Port P21 key-on wakeup	0	Key-on wakeup no	not used	
NZ1	control bit	1	Key-on wakeup us	sed	
K20	Port P20 key-on wakeup	0	Key-on wakeup no	ot used	
K20	control bit	1	Key-on wakeup us	sed	

Key-on wakeup control register L1		at reset : 00002		at RAM back-up : state retained	R/W TAL1/TL1A
1.10	Ports P10-P13 return condition selection	0	Return by level		
L13	bit	1	Return by edge		
1.10	Ports P10-P13 valid waveform/	0	Falling waveform/"L	." level	
L12	level selection bit	1	Rising waveform/"H	l" level	
144	INT pin	0	Return by level		
L11	return condition selection bit	1	Return by edge		
1.10	INT pin	0	Key-on wakeup not	used	
L10	key-on wakeup control bit	1	Key-on wakeup use	ed	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

Pull-up control register PU0		at reset : 00002		at RAM back-up : state retained	R/W TAPU0/TPU0A
DLIO	Port P03 pull-up transistor	0	Pull-up transistor (OFF	
PU03	control bit	1	Pull-up transistor (NC	
DUIG	Port P02 pull-up transistor	0	Pull-up transistor (OFF	
PU02	control bit	1	Pull-up transistor (r ON	
DUO	Port P01 pull-up transistor	0	Pull-up transistor (OFF	
PU01	control bit	1	Pull-up transistor (NC	
DUIG	Port P00 pull-up transistor	0	Pull-up transistor (OFF	
PU00	control bit	1	Pull-up transistor (NC	

	Pull-up control register PU1 at reset : 00002		at RAM back-up : state retained	R/W TAPU1/TPU1A			
DUIA	Port P13 pull-up transistor	0	Pull-up transistor (OFF			
PU13	control bit	1	Pull-up transistor (NC			
PU12	Port P12 pull-up transistor	0 Pull-up transistor OFF					
PU12	control bit	1	Pull-up transistor (ON			
DUA	Port P11 pull-up transistor	0	Pull-up transistor (OFF			
PU11	control bit	1 Pull-up transistor ON					
DUMA	Port P10 pull-up transistor	0 Pull-up transistor OFF					
PU10	control bit	1	Pull-up transistor (ON			

	Pull-up control register PU2	at reset : 00002		at RAM back-up : state retained	R/W TAPU2/TPU2A		
DLIGo	Port D ₃ pull-up transistor	0	Pull-up transistor (OFF			
PU23	control bit	1	Pull-up transistor (ON			
DUIDo	Port D2 pull-up transistor	0	OFF				
PU22	control bit	1	Pull-up transistor (ON			
DUO	Port P21 pull-up transistor	0	Pull-up transistor (OFF			
PU21	control bit	1 Pull-up transistor ON					
DUIGo	Port P20 pull-up transistor	0 Pull-up transistor OFF					
PU20	control bit	1	Pull-up transistor (ON			

Notes 1: "R" represents read enabled, and "W" represents write enabled.

Por	t output structure control register FR0	at reset : 00002		at RAM back-up : state retained	W TFR0A		
ED00	Dant DOS sutment atmostrate a classical bit	0 N-channel open-dra		rain output			
FRU3	FR03 Port P03 output structure selection bit		CMOS output				
ED0s			N-channel open-drain output				
FR02	Port P02 output structure selection bit	1	CMOS output				
FR01	Bart BO and set of set	0	N-channel open-de	rain output			
FRU1	Port P01 output structure selection bit	1	CMOS output				
ED0s	FR00 Port P00 output structure selection bit		N-channel open-di	rain output			
FRU0			CMOS output				

Por	t output structure control register FR1	at reset : 00002		at RAM back-up : state retained	W TFR1A		
ED40	Dort D4s suitaut structure selection hit	0 N-channel open-dra		rain output			
FR13	FR13 Port P13 output structure selection bit 1 CMOS output		CMOS output				
ED4e			N-channel open-drain output				
FR12	Port P12 output structure selection bit	1	CMOS output				
ED4.	Dant Dd c autout atmost up a alastica hit	0	N-channel open-d	N-channel open-drain output			
FK11	FR11 Port P11 output structure selection bit		CMOS output				
ED4°	FR10 Port P10 output structure selection bit		N-channel open-drain output				
FK10			CMOS output				

Por	t output structure control register FR2	at reset : 00002		at RAM back-up : state retained	W TFR2A			
FR23	EDO: N							
FR23	FR23 Not used	1	This bit has no function, but read/write is enabled.					
ED00			0					
FR22	Not used	1	This bit has no function, but read/write is enabled.					
FR21	Bart BO and set at material and a first bit	0	N-channel open-dr	N-channel open-drain output				
FRZ1	Port P21 output structure selection bit	output structure selection bit 1 CMOS output		putput				
ED0s	FR20 Port P20 output structure selection bit		N-channel open-dr	ain output				
FR20			CMOS output					

Por	t output structure control register FR3	at reset : 00002		at RAM back-up : state retained	W TFR3A		
FR33	Dort Do output atrusture coloction hit	0 N-channel open-drai		rain output			
FK33	Port D3 output structure selection bit	1	CMOS output				
FR32	5D0 D 1 D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 N-channel open-drain output				
FR32	Port D2 output structure selection bit	1	CMOS output				
ED0.	Dant De codrect atmostore calcution hit	0	N-channel open-d	rain output			
FR31	Port D1 output structure selection bit	1	CMOS output				
FD0		0	N-channel open-drain output				
FR30	FR30 Port D ₀ output structure selection bit		CMOS output				

Notes 1: "R" represents read enabled, and "W" represents write enabled.

INSTRUCTIONS

Each instruction is described as follows;

- (1) Index list of instruction function
- (2) Machine instructions (index by alphabet)
- (3) Machine instructions (index by function)
- (4) Instruction code table

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
Α	Register A (4 bits)	RPS	Prescaler reload register (8 bits)
В	Register B (4 bits)	R1L	Timer 1 reload register (8 bits)
DR	Register D (3 bits)	R1H	Timer 1 reload register (8 bits)
E	Register E (8 bits)	R2L	Timer 2 reload register (8 bits)
Q1	A/D control register Q1 (4 bits)	R2H	Timer 2 reload register (8 bits)
V1	Interrupt control register V1 (4 bits)	PS	Prescaler
V2	Interrupt control register V2 (4 bits)	T1	Timer 1
I 1	Interrupt control register I1 (4 bits)	T2	Timer 2
W1	Timer control register W1 (4 bits)	T1F	Timer 1 interrupt request flag
W2	Timer control register W2 (4 bits)	T2F	Timer 2 interrupt request flag
W5	Timer control register W5 (4 bits)	WDF1	Watchdog timer flag
W6	Timer control register W6 (4 bits)	WEF	Watchdog timer enable flag
FR0	Port output structure control register FR0 (4 bits)	INTE	Interrupt enable flag
FR1	Port output structure control register FR1 (4 bits)	EXF0	External 0 interrupt request flag
FR2	Port output structure control register FR2 (4 bits)	Р	Power down flag
FR3	Port output structure control register FR3 (4 bits)	ADF	A/D conversion completion flag
J1	Serial interface control register J1 (4 bits)	SIOF	Serial interface transmit/receive completion flag
MR	Clock control register MR (4 bits)		
K0	Key-on wakeup control register K0 (4 bits)	D	Port D (4 bits)
K1	Key-on wakeup control register K1 (4 bits)	P0	Port P0 (4 bits)
K2	Key-on wakeup control register K2 (4 bits)	P1	Port P1 (4 bits)
L1	Key-on wakeup control register L1 (4 bits)	P2	Port P2 (2 bits)
PU0	Pull-up control register PU0 (4 bits)		, ,
PU1	Pull-up control register PU1 (4 bits)	x	Hexadecimal variable
PU2	Pull-up control register PU2 (4 bits)	l _y	Hexadecimal variable
X	Register X (4 bits)	z	Hexadecimal variable
Υ	Register Y (4 bits)	p	Hexadecimal variable
Z	Register Z (2 bits)	n n	Hexadecimal constant
DP	Data pointer (10 bits)	li	Hexadecimal constant
	(It consists of registers X, Y, and Z)	li	Hexadecimal constant
PC	Program counter (14 bits)	A3A2A1A0	Binary notation of hexadecimal variable A
РСн	High-order 7 bits of program counter	7 107 127 117 10	(same for others)
PCL	Low-order 7 bits of program counter		(
SK	Stack register (14 bits X 8)	←	Direction of data movement
SP	Stack pointer (3 bits)	\leftrightarrow	Data exchange between a register and memory
CY	Carry flag	?	Decision of state shown before "?"
0.	Jany nag	()	Contents of registers and memories
			Negate, Flag unchanged after executing instruction
		M(DP)	RAM address pointed by the data pointer
		a	Label indicating address a6 a5 a4 a3 a2 a1 a0
		p, a	Label indicating address a6 a5 a4 a3 a2 a1 a0
		۲, ۵	in page p6 p5 p4 p3 p2 p1 p0
		С	Hex. C + Hex. number x (also same for others)
			TIEA. O T LIEA. HUITIDEL X (dISO SAITIE TOI OUTETS)
		+	
		×	

Note: The 4508 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

INDEX LIST OF INSTRUCTION FUNCTION

Group- ing	Mnemonic	Function	G	roup- ing	Mnemonic	Function
	TAB	(A) ← (B)			XAMI j	$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$
	TAX	$(B) \leftarrow (A)$		ster traı		j = 0 to 15 (Y) \leftarrow (Y) + 1
	TAY TYA	$(A) \leftarrow (Y)$ $(Y) \leftarrow (A)$		RAM to register transfer	TMA j	$(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$
	TEAB	(E7–E4) ← (B)		RAN		j = 0 to 15
ansfer		(E3–E0) ← (A)			LA n	$(A) \leftarrow n$ n = 0 to 15
Register to register transfer	TABE	$(B) \leftarrow (E7-E4)$ $(A) \leftarrow (E3-E0)$			ТАВР р	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$
ister to r	TDA	$(DR2-DR0) \leftarrow (A2-A0)$				$(PCH) \leftarrow p \text{ (Note)}$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$
Reg	TAD	$ (A2-A0) \leftarrow (DR2-DR0) $ $ (A3) \leftarrow 0 $				(UPTF) = 1, (DR1, DR0) \leftarrow (ROM(PC))9, 8 (DR2) \leftarrow 0
	TAZ	$(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$				$ (B) \leftarrow (ROM(PC))7-4 $ $ (A) \leftarrow (ROM(PC))3-0 $
	TAX	$(A) \leftarrow (X)$				$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
	TASP	$(A_2-A_0) \leftarrow (SP_2-SP_0)$ $(A_3) \leftarrow 0$		u	AM	$(A) \leftarrow (A) + (M(DP))$
	LXY x, y	$(X) \leftarrow x \ x = 0 \text{ to } 15$ $(Y) \leftarrow y \ y = 0 \text{ to } 15$		operatio	AMC	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$
RAM addresses	LZ z	$(Z) \leftarrow z z = 0 \text{ to } 3$		Arithmetic operation	A n	$ (A) \leftarrow (A) + n $ $ n = 0 \text{ to } 15 $
RAM a	INY	(Y) ← (Y) + 1			AND	$(A) \leftarrow (A) \text{ AND } (M(DP))$
	DEY	(Y) ← (Y) − 1			OR	$(A) \leftarrow (A) OR (M(DP))$
	ТАМ ј	$(A) \leftarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ $i = 0 \text{ to } 1F$			SC	(CY) ← 1
ransfer	XAM j	j = 0 to 15 $(A) \leftarrow \rightarrow (M(DP))$			RC SZC	$(CY) \leftarrow 0$ $(CY) = 0 ?$
RAM to register transfer	,	$(X) \leftarrow (X) = (X) $			CMA	$(A) \leftarrow (\overline{A})$
RAM to	XAMD j	$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$ $(Y) \leftarrow (Y) - 1$			RAR	CY A3A2A1A0
Note: p is	<u> </u>					

Note: p is 0 to 31.

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Group- ing	Mnemonic	Function
	SB j	$(Mj(DP)) \leftarrow 1$ j = 0 to 3		DI	(INTE) ← 0
Bit operation	RB j	$(Mj(DP)) \leftarrow 0$ j = 0 to 3			(INTE) ← 1 V10 = 0: (EXF0) = 1 ? (EXF0) ← 0
	SZB j	(Mj(DP)) = 0? j = 0 to 3			V10 = 1: SNZ0 = NOP I12 = 0 : (INT) = "L" ?
rrison Ition	SEAM	(A) = (M(DP))?	Interrupt operation		l12 = 1 : (INT) = "H" ?
Comparison operation	SEA n	(A) = n? n = 0 to 15	errupt o		(A) ← (V1)
	Ва	(PCL) ← a6–a0	Inte		$(V1) \leftarrow (A)$
Branch operation	BL p, a	(PCH) ← p (Note)			$(A) \leftarrow (V2)$ $(V2) \leftarrow (A)$
anch op	BLA p	(PCL) ← a6–a0 (PCH) ← p (Note)			(A) ← (I1)
Br		$(PCL) \leftarrow (DR_2-DR_0, A_3-A_0)$		TI1A	(I1) ← (A)
	ВМ а	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$		TPAA	(PA) ← (A)
		(PCH) ← 2 (PCL) ← a6-a0		TAW1	(A) ← (W1)
eration	BML p, a	(SP) ← (SP) + 1		TW1A	(W1) ← (A)
Subroutine operation		$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$ $(PCL) \leftarrow a6-a0$			$(A) \leftarrow (W2)$
Subro	BMLA p	(SP) ← (SP) + 1			$(W2) \leftarrow (A)$ $(A) \leftarrow (W5)$
	-	$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$	ıtion		$(W5) \leftarrow (A)$
		$(PCL) \leftarrow (DR2-DR0, A3-A0)$	Timer operation		(A) ← (W6)
	RTI	$ (PC) \leftarrow (SK(SP)) $ $ (SP) \leftarrow (SP) - 1 $	Time	TW6A	(W6) ← (A)
	RT	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$		TABPS	(B) ← (TPS7–TPS4) (A) ← (TPS3–TPS0)
Return operation	RTS	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$		TPSAB	$(RPS7-RPS4) \leftarrow (B)$ $(TPS7-TPS4) \leftarrow (B)$ $(RPS3-RPS0) \leftarrow (A)$ $(TPS3-TPS0) \leftarrow (A)$
				TAB1	(B) ← (T17–T14) (A) ← (T13–T10)

Note: p is 0 to 31.

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	F INSTRUCTION FUNCTION (cont	Group- ing	Mnemonic	Function
l liig	T1AB	$(R1L7-R1L4) \leftarrow (B)$	iiig	SZD	(D(Y)) = 0 ? (Y) = 0 to 3
		$(T17-T14) \leftarrow (B)$ $(R1L3-R1L0) \leftarrow (A)$		TEDOA	
		(T13–T10) ← (A)		TFR0A	(FR0) ← (A)
	T1HAB	$(R1H7-R1H4) \leftarrow (B)$ $(R1H3-R1H0) \leftarrow (A)$		TFR1A	(FR1) ← (A)
	TAB2	(B) ← (T27–T24)		TFR2A	(FR2) ← (A)
		$(A) \leftarrow (T23 - T20)$		TFR3A	(FR3) ← (A)
	T2AB	$(R2L7-R2L4) \leftarrow (B)$ $(T27-T24) \leftarrow (B)$		TK0A	$(K0) \leftarrow (A)$
ration		$(R2L3-R2L0) \leftarrow (A)$ $(T23-T20) \leftarrow (A)$		TAK0	$(A) \leftarrow (K0)$
Timer operation	Т2НАВ	(R2H7–R2H4) ← (B)		TK1A	(K1) ← (A)
Ë	TZHAB	$(R2H3-R2H0) \leftarrow (A)$	ration	TAK1	(A) ← (K1)
	T1R1L	(T17–T10) ← (R1L7–R1L0)	Input/Output operation	TK2A	$(K2) \leftarrow (A)$
	T2R2L	(T27–T20) ← (R2L7–R2L0)	ıt/Outp	TAK2	(A) ← (K2)
	SNZT1	V12 = 0: (T1F) = 1 ?	lnpu	TPU0A	(PU0) ← (A)
		$(T1F) \leftarrow 0$ V12 = 1: SNZT1 = NOP		TAPU0	(A) ← (PU0)
	SNZT2	V13 = 0: (T2F) = 1 ?		TPU1A	(PU1) ← (A)
		$(T2F) \leftarrow 0$ V13 = 1: SNZT2 = NOP		TAPU1	(A) ← (PU1)
	IAP0	(A) ← (P0)		TPU2A	(PU2) ← (A)
	OP0A	(P0) ← (A)		TAPU2	(A) ← (PU2)
	IAP1	(A) ← (P1)		TL1A	(L1) ← (A)
<u></u>	OP1A	(P1) ← (A)		TAL1	(A) ← (L1)
Input/Output operation	IAP2	(A1, A0) ← (P21, P20) (A3, A2) ← 0			
t/Outp	OP2A	(P21, P20) ← (A1, A0)			
lnpu	CLD	(D) ← 1			
	RD	$(D(Y)) \leftarrow 0$ $(Y) = 0 \text{ to } 3$			
	SD	$(D(Y)) \leftarrow 1$ $(Y) = 0 \text{ to } 3$			

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Froup- ing	Mnemonic	Function
J	TABSI	$(B) \leftarrow (SI7-SI4) \ \ (A) \leftarrow (SI3-SI0)$		NOP	(PC) ← (PC) + 1
	TSIAB	$(SI7-SI4) \leftarrow (B) (SI3-SI0) \leftarrow (A)$		POF	RAM back-up
Serial interface operation	SST	(SIOF) ← 0		EPOF	POF instruction valid
эдо ә		Serial interface transmit/receive starting		SNZP	(P) = 1 ?
terfac	SNZSI	V23=0: (SIOF)=1? (SIOF) ← 0		DWDT	Stop of watchdog timer function enabled
rial in		V23 = 1: SNZSI = NOP	ation	DWDI	Stop of waterloog times function enabled
	TAJ1	(A) ← (J1)	Other operation		(WDF1) = 1 ?, (WDF1) ← 0
	TJ1A	$(J1) \leftarrow (A)$	ō	SRST	System reset
	CRCK	RC oscillator selected		RUPT	(UPTF) ← 0
eratior	TRGA	$(RG0) \leftarrow (A0)$		SUPT	(UPTF) ← 1
Clock operation	TAMR	$(A) \leftarrow (MR)$			Voltage drop detection circuit valid at RAM back-
	TMRA	$(MR) \leftarrow (A)$			up
	TABAD	Q13 = 0,			
		$(B) \leftarrow (AD9-AD6)$ $(A) \leftarrow (AD5-AD2)$			
		Q13 = 1,			
		(B) ← (AD7–AD4)			
		$(A) \leftarrow (AD3-AD0)$			
	TALA	$(A_3, A_2) \leftarrow (AD_1, AD_0)$			
ر		$(A1,A0) \leftarrow 0$			
eration	TADAB	Q13 = 1 : (AD7–AD4) ← (B)			
obe		$(AD3-AD0) \leftarrow (A)$			
ion		Q13 = 0 : TABAD = NOP			
A/D conversion	TAQ1	(A) ← (Q1)			
A/D cc	TQ1A	(Q1) ← (A)			
	ADST	(ADF) ← 0			
		Q13 = 0 : A/D conversion starting			
		Q13 = 1 : Comparator operation starting			
	SNZAD	V22 = 0: (ADF) = 1 ?			
		(ADF) ← 0			
		V22 = 1: SNZAD = NOP			

Note: The SVDE instruction can be used only in the H version.

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

A n (Add n	and accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 1 1 0 n n n n n 2 0 6 n 16	1	1	-	Overflow = 0
ADST (A/D Instruction code	$(A) \leftarrow (A) + n$ $n = 0 \text{ to } 15$ $D \text{ conversion STart})$ $D \text{ g} \qquad D \text{ g}$ $1 \text{ 0 } 1 \text{ 0 } 0 \text{ 1 } 1 \text{ 1 } 1 \text{ 1 } 1$ $(ADF) \leftarrow 0$ $Q13 = 0: \text{ A/D conversion starting}$ $Q13 = 1: \text{ Comparator operation starting}$ $Q13: \text{ bit } 3 \text{ of A/D control register Q1})$	Number of words 1 Grouping:	register A, The contents Skips the i overflow as Executes t overflow as Number of cycles 1 A/D conversion conversion	ralue n in and stores s of carry flanext instructions the resulting the next in sthe resulting to A/D cound the A/	the immediate field to a a result in register A. If CY remains unchanged action when there is not to of operation. Skip condition Skip condition Conversion completion onversion at the A/D accomparator mode (Q1s)
AM (Add a Instruction code	D9 D0 0 0 0 0 1 0 1 0 2 0 0 A 16	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	$(A) \leftarrow (A) + (M(DP))$	Grouping: Description	Stores the	result in re	of M(DP) to register A egister A. The contents ains unchanged.
AMC (Add	accumulator, Memory and Carry)				
Instruction code	D9	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$	Grouping:	Arithmetic : Adds the c	operation contents o ster A. Sto	f M(DP) and carry flag ores the result in regis- cy.

AND (logic	al AND between accumulator and memory)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 0 0 0 2 0 1 8	words	cycles		
	10	1	1	_	_
Operation:	$(A) \leftarrow (A) \text{ AND } (M(DP))$	Grouping:	Arithmetic	operation	
operation.	(1) \ (1) \ (1) (1) (1)	Description	: Takes the	AND opera	ation between the con-
				-	and the contents of e result in register A.
B a (Branc	h to address a)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 1 1 a6 a5 a4 a3 a2 a1 a0 2 1 8 a 16	words	cycles		
		1	1	_	_
Operation:	(PCL) ← a6 to a0	Grouping:	Branch ope		
		Description			: Branches to address
		Note:	a in the ide Specify the including the	e branch a	ddress within the page
BL p, a (Br	ranch Long to address a in page p)	Number of	Number of	Flor CV	Chin condition
code	D9 D0	words	Number of cycles	Flag CY	Skip condition
	0 0 1 1 1 p4 p3 p2 p1 p0 2 0 +p p 16	2	2	_	-
	1 0 0 a6 a5 a4 a3 a2 a1 a0 ₂ 2 a a ₁₆	Grouping:	Branch ope	l leration	
Operation:	(DCu) (p	Description			: Branches to address
Operation:	(PCH) ← p (PCL) ← a6 to a0	Note:	a in page p p is 0 to 31).	
BLA p (Bra	anch Long to address (D) + (A) in page p)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 0 0 0 0 2	words	cycles		·
		2	2	_	-
	1 0 0 p4 0 0 p3 p2 p1 p0 2 2 p p p 16	Grouping:	Branch ope		
Operation:	$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$	Description Note:		DR ₀ A ₃ A ₃ and A in p	: Branches to address 2 A1 A0)2 specified by page p.

	nch and Mark to address a in page 2)				•
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 1 0 a6 a5 a4 a3 a2 a1 a0 ₂ 1 a a ₁		1	_	_
Operation	(CD) . (CD) . 4	Grouping:	Subroutine	call onera	ation
Operation:	$(SP) \leftarrow (SP) + 1$	Description			in page 2 : Calls th
	$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow 2$	Description			s a in page 2.
	(PCL) ← a6–a0	Note:			ng from page 2 to an
	(1 OL) ~ a0-a0				be called with the BN
					arts on page 2.
					r the stack because the
			maximum I	evel of sub	routine nesting is 8.
BML p, a (Branch and Mark Long to address a in page p)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 1 1 0 p4 p3 p2 p1 p0 2 0 C p 1	words	cycles		
		2	2	_	_
	1 0 0 a6 a5 a4 a3 a2 a1 a0 ₂ 2 a a ₁	Grouping:	Subroutine		
Operation:	$(SP) \leftarrow (SP) + 1$	Description			Calls the subroutine a
·	$(SK(SP)) \leftarrow (PC)$		address a		
	$(PCH) \leftarrow p$	Note:	p is 0 to 31		
	(PCL) ← a6–a0				r the stack because the proutine nesting is 8.
			maximam	ever or out	routine resumg to c.
BMLA p (F	Branch and Mark Long to address (D) + (A) in page	n)			
Instruction	D9 D0		Number of	Flag CY	Skip condition
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
Instruction code	D9 D0 0 0 0 0 1 1 0 0 0 0 0 2 0 3 0 1	Number of words		Flag CY	Skip condition
		Number of words	cycles 2	_	
code	0 0 0 0 1 1 0 0 0 0 2 0 3 0 1	Number of words 2 Grouping:	cycles 2 Subroutine	- e call opera	- ation
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	cycles 2 Subroutine 1: Call the su	call opera	ation Calls the subroutine a
code		Number of words 2 Grouping:	cycles 2 Subroutine 1: Call the su address (D	call operabroutine:	ation Calls the subroutine a R0 A3 A2 A1 A0)2 speci
code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 2 Grouping: Description	cycles 2 Subroutine 1: Call the su address (D fied by reg	call operations call operation	ation Calls the subroutine a
code		Number of words 2 Grouping:	cycles 2 Subroutine 1: Call the su address (D fied by reg p is 0 to 31	call opera broutine : 0R2 DR1 D isters D ar	ation Calls the subroutine a R0 A3 A2 A1 A0)2 speci nd A in page p.
code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 2 Grouping: Description	cycles 2 Subroutine 1: Call the su address (D fied by reg p is 0 to 31 Be careful	call opera broutine : PR2 DR1 D isters D ar	ation Calls the subroutine a R0 A3 A2 A1 A0)2 speci
code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 2 Grouping: Description	cycles 2 Subroutine 1: Call the su address (D fied by reg p is 0 to 31 Be careful	call opera broutine : PR2 DR1 D isters D ar	ation Calls the subroutine a R0 A3 A2 A1 A0)2 speci nd A in page p.
Operation:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 2 Grouping: Description Note:	subroutine Call the su address (D fied by reg p is 0 to 31 Be careful maximum I	call opera broutine : PR2 DR1 D isters D ar	ation Calls the subroutine a R0 A3 A2 A1 A0)2 speci nd A in page p.
Operation:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 2 Grouping: Description Note: Number of words	subroutine Call the su address (E fied by reg p is 0 to 31 Be careful maximum I	call opera broutine : PR2 DR1 D isters D ar I. not to over	ation Calls the subroutine a Ro A3 A2 A1 A0)2 speci and A in page p. The stack because the routine nesting is 8.
Operation: CLD (CLea	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 2 Grouping: Description Note: Number of words	subroutine Call the su address (D fied by reg p is 0 to 31 Be careful maximum I	call opera broutine : PR2 DR1 D isters D ar I. not to over	ation Calls the subroutine a Ro A3 A2 A1 A0)2 speci and A in page p. The stack because the routine nesting is 8.
Operation: CLD (CLea Instruction code	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Number of words 2 Grouping: Description Note: Number of words	subroutine Call the su address (D fied by reg p is 0 to 31 Be careful maximum I	call opera broutine : PR2 DR1 D isters D ar I. not to ove evel of sub	ation Calls the subroutine a Ro A3 A2 A1 A0)2 speci and A in page p. The stack because the broutine nesting is 8. Skip condition
Operation: CLD (CLea Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 2 Grouping: Description Note: Number of words 1 Grouping:	subroutine 2 Subroutine 1: Call the su address (E fied by reg p is 0 to 31 Be careful maximum I Number of cycles 1	call operation of the call operation o	ation Calls the subroutine a Ro A3 A2 A1 A0)2 speci and A in page p. The stack because the broutine nesting is 8. Skip condition
Operation: CLD (CLea Instruction code	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Number of words 2 Grouping: Description Note: Number of words 1 Grouping:	subroutine Call the su address (E fied by reg p is 0 to 31 Be careful maximum I Number of cycles 1 Input/Outp	call operation of the call operation o	ation Calls the subroutine a Ro A3 A2 A1 A0)2 speci and A in page p. The stack because the broutine nesting is 8. Skip condition
Operation: CLD (CLea	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Number of words 2 Grouping: Description Note: Number of words 1 Grouping:	subroutine Call the su address (E fied by reg p is 0 to 31 Be careful maximum I Number of cycles 1 Input/Outp	call operation of call operation ope	ation Calls the subroutine a Ro A3 A2 A1 A0)2 speci and A in page p. The stack because the broutine nesting is 8. Skip condition
Operation: CLD (CLea Instruction code	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Number of words 2 Grouping: Description Note: Number of words 1 Grouping:	subroutine Call the su address (E fied by reg p is 0 to 31 Be careful maximum I Number of cycles 1 Input/Outp	call operation of call operation ope	ation Calls the subroutine a Ro A3 A2 A1 A0)2 speci and A in page p. The stack because the broutine nesting is 8. Skip condition
Operation: CLD (CLea Instruction code	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Number of words 2 Grouping: Description Note: Number of words 1 Grouping:	subroutine Call the su address (E fied by reg p is 0 to 31 Be careful maximum I Number of cycles 1 Input/Outp	call operation of call operation ope	ation Calls the subroutine a Ro A3 A2 A1 A0)2 speci and A in page p. The stack because the broutine nesting is 8. Skip condition
Operation: CLD (CLea Instruction code	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Number of words 2 Grouping: Description Note: Number of words 1 Grouping:	subroutine Call the su address (E fied by reg p is 0 to 31 Be careful maximum I Number of cycles 1 Input/Outp	call operation of call operation ope	ation Calls the subroutine a Ro A3 A2 A1 A0)2 speci and A in page p. The stack because the broutine nesting is 8. Skip condition

CMA (Colv	plement of Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 0 0 2 0 1 C	words	cycles		•
	0 0 0 0 1 1 1 0 0 2	1	1	_	-
Operation:	$(A) \leftarrow \overline{(A)}$	Grouping:	Arithmetic	operation	
		Description	: Stores the	one's co	mplement for register
			A's conten	ts in regist	er A.
CRCK (Cld	ock select: Rc oscillation ClocK)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 1 1 0 0 1 1 ₁ ₂ 2 9 B ₁₆	1	1	_	_
Operation:	RC oscillation circuit selected	Grouping:	Other oper	ration	
Operation.	NO oscination eneal selected	Description			llation circuit for main
	ement register Y)				
Instruction code	D9 D0 0 0 0 1 0 1 1 1 7	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	(Y) = 15
Operation:	(Y) ← (Y) − 1	Grouping:	RAM addr	esses	
		Description	: Subtracts	1 from the	contents of register Y.
			tents of reg	gister Y is . When the	action, when the con- 15, the next instruction contents of register Y struction is executed.
DI (Disable	Interrupt)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 0 0 2	1	1	_	_
Operation:	(INTE) ← 0	Grouping: Description Note:	disables the	to interrupt se interrupt disabled	enable flag INTE, and

DWDT (Dia	achla Matab Dag Timari				
	sable WatchDog Timer)			EL 0)/	01.1
Instruction code	D9 D0 1 0 0 1 1 1 0 0 2 9 C 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	-
Operation:	Stop of watchdog timer function enabled	Grouping:	Other oper	ation	
Operation.	Ctop of waterlady limer randition enabled		: Stops the	watchdog	timer function by the
			WRST in	struction	after executing the
			DWDT inst	truction.	
EI (Enable	Interrupt)	•			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 1 0 1 2 0 0 5	words 1	cycles 1		
		!	ļ	_	_
Operation:	(INTE) ← 1	Grouping:	Interrupt co		
		Description			enable flag INTE, and
			enables the		
		Note:			by executing the El in-
			Struction a	iter execui	ing 1 machine cycle.
FROF /Fra	able DOE instruction)				
Instruction	able POF instruction)	Number of	Number of	Flog CV	Ckin condition
code	D9 D0	words	cycles	Flag CY	Skip condition
code	0 0 0 1 0 1 1 1 2 0 5 B ₁₆	1	1	_	_
Operation:	POF instruction valid	Grouping:	Other oper	ation	<u> </u>
		Description	: Makes the	immediate	e after POF instruction
			valid by ex	ecuting the	e EPOF instruction.
	t Accumulator from port P0)	1		1	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 0 0 2 2 6 0 16		-		
		1	1	_	_
Operation:	(A) ← (P0)	Grouping:	Input/Outp	ut operation	n
> p = . 4.10111		Description	: Transfers t	he input o	f port P0 to register A.

IAP I (Inpu	t Accumulator from port P1)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 1 1 2 2 6 1 16	words	cycles		
		1	1	_	_
Operation:	(A) ← (P1)	Grouping:	Input/Outp	ut operatio	n
оролишен.					port P1 to register A.
IAP2 (Inpu	t Accumulator from port P2)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 1 0 2 2 6 2	words	cycles		·
		1	1	_	_
Operation:	(A1, A0) ← (P21, P20)	Grouping:	Input/Outp	ut operatio	n
	$(A3, A2) \leftarrow 0$	Description: Transfers the input of port P2 to th			
			der 2 bits (-
		Note:			n is executed, "0" i
			register A.	tne nign-o	rder 2 bits (A3, A2) o
			register A.		
INV /INIoro	ment register V				
Instruction	ment register Y) D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	l lag C1	Skip condition
0000	0 0 0 0 0 1 0 1 1 1 2 0 1 3	1	1	_	(Y) = 0
	00 00 1	Grouping:	RAM addr	2000	
Operation:	$(Y) \leftarrow (Y) + 1$	Description			s of register Y. As a re
		sult of addition, when the contents			· ·
			sult of ac	adition, w	hen the contents o
			register \	is 0, the	hen the contents on the next instruction is contents of register Y is
			register \ skipped. V	is 0, the Vhen the co	e next instruction is
			register \ skipped. V	is 0, the Vhen the co	e next instruction is ontents of register Y is
			register \ skipped. V	is 0, the Vhen the co	e next instruction is ontents of register Y is
LA n (Load	d n in Accumulator)		register \ skipped. V	is 0, the Vhen the co	e next instruction is ontents of register Y is
LA n (Load Instruction	d n in Accumulator)	Number of	register \\ skipped. V\\ not 0, the I\\ Number of	is 0, the Vhen the co	e next instruction is ontents of register Y is
	D9 D0 0 7 n	words	register \\ skipped. V\\ not 0, the I\\ Number of cycles	/ is 0, the when the conext instruction	e next instruction is ontents of register Y is ction is executed. Skip condition
Instruction	D9 D0		register \\ skipped. V\\ not 0, the I\\ Number of	is 0, the other than the conext instruc	e next instruction is contents of register Y is cition is executed. Skip condition Continuous
Instruction code	D9	words 1	register \\ skipped. V\\ not 0, the I\\ Number of cycles	/ is 0, the vhen the conext instruction	e next instruction is ontents of register Y is ction is executed. Skip condition
Instruction code	D9 D0 0 7 n	words	register \\ skipped. V \\ not 0, the I \\ Number of \text{cycles} \\ 1 \\ Arithmetic	/ is 0, the when the conext instruction	e next instruction is contents of register Y is cition is executed. Skip condition Continuous description
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping:	register \\ skipped. V \\ not 0, the I \\ Number of \text{cycles} \\ 1 \\ Arithmetic	/ is 0, the when the conext instruction	e next instruction is contents of register Y is cition is executed. Skip condition Continuous description
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping:	Number of cycles Arithmetic: Loads the register A. When the	Flag CY operation value n in	e next instruction is contents of register Y is contents of register Y is continuous. Skip condition Continuous description the immediate field to tions are continuous!
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping:	Number of cycles Arithmetic: Loads the register A. When the coded and	Flag CY operation value n in	e next instruction is contents of register Y is contents of register Y is continuous. Skip condition Continuous description the immediate field to tions are continuously, only the first LA in
Instruction	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping:	Number of cycles Arithmetic: Loads the register A. When the coded and struction	Flag CY poperation C is 0, the conext instruction Flag CY poperation value n in LA instruction dexecuted is executed.	Skip condition Continuous description the immediate field to the i
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping:	Number of cycles Arithmetic: Loads the register A. When the coded and struction	Flag CY poperation C is 0, the conext instruction Flag CY poperation value n in LA instruction dexecuted is executed.	e next instruction is contents of register Y is contents of register Y is continuous. Skip condition Continuous description the immediate field to tions are continuously, only the first LA in

	Load register X and Y with x and y)	Manage 1	Month	Flor: OV	Older and Pri
Instruction code	D9 D0 1 1 x3 x2 x1 x0 v3 v2 v1 v0 3 x v	Number of words	Number of cycles	Flag CY	Skip condition
0000	1 1 x3 x2 x1 x0 y3 y2 y1 y0 2 3 x y 16	1	1	_	Continuous description
Operation:	$(X) \leftarrow x \ x = 0 \text{ to } 15$	Grouping:	RAM addr	esses	
	$(Y) \leftarrow y \ y = 0 \text{ to } 15$	Description	: Loads the	value x in	the immediate field to
			register X,	and the va	alue y in the immediate
			field to re	gister Y. V	Vhen the LXY instruc
			tions are c	ontinuousl	y coded and executed
			only the fi	irst LXY ir	nstruction is executed
			and other	LXY instru	uctions coded continu
			ously are s	skipped.	
LZ z (Load	register Z with z)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 0 1 0 21 20 2 0 4 8 +2 16	words	cycles		
		1	1	_	_
Operation:	$(Z) \leftarrow z z = 0 \text{ to } 3$	Grouping: RAM addresses			
		Description		value z in	the immediate field to
			register Z.		
NOP (No C	Peration)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16	words	cycles		
		1	1	_	_
Operation:	(PC) ← (PC) + 1	Grouping:	Other oper	ration	
o por accom		Description			1 to program counter
					nain unchanged.
					· ·
OPOA (Out	tput port P0 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	l lag 01	Skip condition
Code	1 0 0 0 1 0 0 0 0 0 0 2 2 2 2 0 16	1	1	_	_
		'	'		
Operation:	(P0) ← (A)	Grouping:	Input/Outp	ut operation	on
-		Description	: Outputs th	ne content	s of register A to por
			P0.		

OP1A (Out	tput port P1 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 0 0 1 1 2 2 2 1 16	words	cycles		
		1	1	_	-
Operation:	(P1) ← (A)	Grouping:	Input/Outp	ut operatio	n
		Description	: Outputs th	ne content	s of register A to port
			P1.		
OP2A (Out	tput port P2 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 0 0 1 0 2 2 2 2 16	words	cycles		
		1	1	_	_
Operation:	(P21, P20) ← (A1, A0)	Grouping:	Input/Outp	•	
		Description	: Outputs th (A1, A0) of		of the low-order 2 bits to port P2.
Instruction	OR between accumulator and memory)	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 1 1 0 0 1 2 0 1 9 16	1	1	_	_
Operation:	$(A) \leftarrow (A) OR (M(DP))$	Grouping:	Arithmetic	operation	
		Description	tents of r	egister A	tion between the con- and the contents of e result in register A.
POF (Powe	er OFF)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 0 0 1 0 2 16	1	1	_	-
Operation:	RAM back-up	Grouping:	Other oper	ation	
		Description Note:	ecuting the the EPOF i	e POF instruction. F instructio	M back-up state by ex- ruction after executing on is not executed just on, this instruction is
					instruction.

DAD (Data	to Accumulator Dight\				
Instruction	ate Accumulator Right) Do Do	Number of	Number of	Flag CY	Skip condition
code		words	cycles	riag CT	Skip condition
3000	0 0 0 0 0 1 1 1 1 0 1 ₂ 0 1 D ₁₆	1	1	0/1	-
Operation:	→CY → A3A2A1A0 ¬	Grouping:	Arithmetic	operation	
		Description	: Rotates 1 l	bit of the co	ontents of register A in-
			cluding the right.	e contents	of carry flag CY to the
RB j (Rese	et Bit)				
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	_	-
Operation:	$(Mj(DP)) \leftarrow 0$	Grouping:	Bit operation		
·	j = 0 to 3	Description			ts of bit j (bit specified e immediate field) of
RC (Reset	Carry flag) D9 D0 0 0 0 0 0 0 0 1 1 0 0 0 6	Number of words	Number of cycles	Flag CY	Skip condition
coue	0 0 0 0 0 0 0 1 1 1 0 2 0 0 6 16	1	1	0	-
Operation:	(CY) ← 0	Grouping:	Arithmetic	operation	
		Description	: Clears (0)	to carry fla	g CY.
RD (Reset	port D specified by register Y)				
Instruction code	D9 D0 0 0 0 1 0 1 0 0 0 1 4 4	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	-
Operation:	$(D(Y)) \leftarrow 0$ However, (Y) = 0 to 3	Grouping: Description Note:	(Y) = 0 to 3	a bit of port 3. ecute this in	D specified by register Y. nstruction if values ex-

	n from subroutine)	. (,		
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles		<u>'</u>
	0 0 0 1 0 0 0 1 0 0 2	1	2	_	_
Operation:	$(PC) \leftarrow (SK(SP))$	Grouping:	Return ope	eration	
•	(SP) ← (SP) − 1	Description	: Returns f	rom subro	outine to the routine
			called the	subroutine	
RTI (ReTu	rn from Interrupt)				
Instruction	D9 D0 0 0 1 0 0 0 1 1 0 0 0 4 6 46	Number of words	Number of cycles	Flag CY	Skip condition
-	0 0 0 1 0 0 0 1 1 0 2 0 4 6 16	1	1	-	-
Operation:	$(PC) \leftarrow (SK(SP))$	Grouping:	Return ope		
•	$(SP) \leftarrow (SP) - 1$	Description			upt service routine to
			main routir		f data pointer (V. V. 7)
					f data pointer (X, Y, Z), , NOP mode status by
					ption of the LA/LXY in-
					and register B to the
			states just	before inte	errupt.
RTS (ReTu	urn from subroutine and Skip)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 0 1 0 1 2 0 4 5	1	2	_	Skip at uncondition
Operation:	$(PC) \leftarrow (SK(SP))$	Grouping:	Return ope	eration	
•	(SP) ← (SP) – 1	Description	: Returns f	rom subro	outine to the routine
			called the s		and skips the next in- on.
RUPT (Res	set UPT flag)				
Instruction	D9 D0 0 0 1 0 1 1 0 0 0 0 5 8 40	Number of words	Number of cycles	Flag CY	Skip condition
Code	0 0 0 1 0 1 1 0 0 0 0 0 2 0 5 8 16	1	1	_	-
Operation:	(UPTF) ← 0	Grouping:	Other oper	ation	
·		Description	: Clears (0) enable flag	-	h-order bit reference

SB j (Set B		1	T	1	l
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 1 1 1 j j ₂ 0 5 ^C _{+j} ₁₆	1	1	_	_
Operation:	(Mi/DD)) (0	Grouping:	Bit operation	l on	
эрегацоп.	$ (Mj(DP)) \leftarrow 0 $ $ j = 0 \text{ to } 3 $		•		of bit j (bit specified b
			the value j	in the imm	nediate field) of M(DP)
SC (Set Ca	arry flag)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	1	_
Operation:	(CY) ← 1	Grouping:	Arithmetic		
		Description	: Sets (1) to	carry flag	CY.
SD (Set po	rt D specified by register Y) D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 0 1 0 1 2 0 1 5	words 1	cycles 1	-	_
Operation:	(D(Y)) ← 1	Grouping:	Input/Outp	L ut operatio	n
Operation.	(Y) = 0 to 3	Description Note:	: Sets (1) to a (Y) = 0 to 3	bit of port E 3. cute this i	O specified by register Y.
	p Equal, Accumulator with immediate data n)		T	1	
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 0 0 1 0 1 2 0 2 5	2	2	_	(A) = n
	0 0 0 1 1 1 n n n n ₂ 0 7 n ₁₆	Grouping:	Compariso		
Operation:	(A) = n ? n = 0 to 15	Description	tents of reg	gister A is ate field.	uction when the con equal to the value n in struction when the con
			tents of reg		not equal to the value in the v

SEAM (Sk	ip Equal, Accumulator with Memory)				
Instruction	D9 D0 0 0 0 1 0 0 1 1 0 0 2 6 46	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 1 0 0 1 1 0 2 0 16	1	1	_	(A) = (M(DP))
Operation:	(A) = (M(DP))?	Grouping:	Compariso		
		Description	tents of reg M(DP). Executes t	gister A is on the next instance of the next instan	ruction when the con- equal to the contents of struction when the con- a is not equal to the
SNZ0 (Skip	o if Non Zero condition of external 0 interrupt reques	st flag)			
Instruction	D9 D0 0 0 0 1 1 1 0 0 0 0 3 8 46	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	V10 = 0: (EXF0) = 1
Operation:	V10 = 0: (EXF0) = 1 ?	Grouping:	Interrupt of		
	(EXF0) ← 0 V10 = 1: SNZ0 = NOP (V10 : bit 0 of the interrupt control register V1)	Description	and skips t 0 interrupt the EXF0 struction.	the next in request f flag is "0," = 1 : This	ars (0) to the EXF0 flag struction when external lag EXF0 is "1." When executes the next in- s instruction is equiva- uction.
	kip if Non Zero condition of A/D conversion complet				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 0 1 1 1 1 2 2 8 7 16	words 1	cycles 1	_	V22 = 0: (ADF) = 1
Operation:	V22 = 0: (ADF) = 1 ?	Grouping:	A/D conve	rsion oper	lation
орогино	$(ADF) \leftarrow 0$	Description	: When V22	= 0 : Cle	ars (0) to the ADF flag
	V22 = 1: SNZAD = NOP (V22 : bit 2 of the interrupt control register V2)		conversio When the instruction	n comple ADF flag is = 1 : This	instruction when A/D tion flag ADF is "1." s "0," executes the next instruction is equiva-
SNZIO (Ski	p if Non Zero condition of external 0 Interrupt input	pin)			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 1 1 1 1 0 1 0 2 0 3 A 16	1	1	-	I12 = 0 : (INT) = "L" I12 = 1 : (INT) = "H"
Operation:	I12 = 0 : (INT) = "L" ? I12 = 1 : (INT) = "H" ? (I12 : bit 2 of the interrupt control register I1)	Grouping: Description	when the I the next ir pin is "H." When I12 when the I	= 0 : Skip level of IN estruction = 1 : Skip level of IN	os the next instruction IT pin is "L." Executes when the level of INT os the next instruction T pin is "H." Executes when the level of INT

	o if Non Zero condition of Power down flag)	1		:	
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	(P) = 1
Operation:	(P) = 1 ?	Grouping:	Other oper	ration	
		Description	: Skips the r	next instru	ction when the P flag is
			"1".		
			After skip	ping, the	P flag remains un
			changed.		-
			Executes	the next in	nstruction when the F
			flag is "0."		
SNZSI (Ski	p if Non Zero condition of Serial Interface interrupt	request flag	j)		
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 0 1 0 0 0 2 8 8	words	cycles		
	16	1	1	_	V23 = 0: (SIOF) =1
		Grouping:	Carial inta	food oper	tion.
Operation:	V23=0: (SIOF)=1?	Grouping: Serial interface operation Description: Clears (0) to SIOF flag and skips instruction when the contents of bit			
	$(SIOF) \leftarrow 0$				•
	V23 = 1: SNZSI = NOP				register V2 is "0" and
			contents of		
				-	nstruction is equivalen
		to the NOP instruction.			
			10 110 1101	inoti dotio	
ONIZT4 (OI	to MALO. Zono ne al Marco (Trong Altabase at account	(1)			
Instruction	rip if Non Zero condition of Timer 1 interrupt request	Number of	Number of	Flag CY	Skip condition
code		words	cycles	l lag C1	Skip condition
couc	1 0 1 0 <td>1</td> <td>1</td> <td>_</td> <td>V12 = 0: (T1F) = 1</td>	1	1	_	V12 = 0: (T1F) = 1
					, ,
Operation:	V12 = 0: (T1F) = 1 ?	Grouping:	Timer oper		(2)
	$(T1F) \leftarrow 0$	Description			ars (0) to the T1F flag
	V12 = 1: SNZT1 = NOP				struction when timer 1
	(V12 = bit 2 of interrupt control register V1)				g T1F is "1." When the
			_	s u, exec	cutes the next instruc-
			tion.	4 . Th:	
			lent to the		s instruction is equiva-
			ient to the	NOP IIISIII	
	ip if Non Zero condition of Timer 2 interrupt request		Number	Flor OV	Oldin and all the co
Instruction	D9 D0	Number of	Number of cycles	Flag CY	Skip condition
			Number of cycles	Flag CY	Skip condition V13 = 0: (T2F) = 1
Instruction code	D9	Number of words	cycles 1	-	
Instruction code	D9 D0 1 0 1 0 0 0 0 0 1 2 2 8 1 16 V13 = 0: (T2F) = 1?	Number of words 1 Grouping:	cycles 1 Timer oper	ration	V13 = 0: (T2F) = 1
Instruction code	D9 D0	Number of words	timer oper When V13	ration = 0 : Clea	V13 = 0: (T2F) = 1 ars (0) to the T2F flag
Instruction code	D9 D0 $1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	Number of words 1 Grouping:	cycles 1 Timer oper When V13 and skips	ration = 0 : Cleathe next in	V13 = 0: (T2F) = 1 ars (0) to the T2F flag struction when timer 2
Instruction code	D9 D0	Number of words 1 Grouping:	cycles 1 Timer oper When V13 and skips interrupt re	ration = 0 : Cleathe next in equest flag	V13 = 0: (T2F) = 1 ars (0) to the T2F flag struction when timer 2 g T2F is "1." When the
Instruction	D9 D0 $1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	Number of words 1 Grouping:	Timer oper When V13 and skips interrupt re T2F flag is	ration = 0 : Cleathe next in equest flag	V13 = 0: (T2F) = 1 ars (0) to the T2F flag struction when timer 2 g T2F is "1." When the
Instruction code	D9 D0 $1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	Number of words 1 Grouping:	Timer oper When V13 and skips interrupt re T2F flag is tion.	ration = 0 : Cleathe next in equest flags "0," execution	

SRST (Sys	stem	Res	Set)														
Instruction	D								D ₀					Number of	Number of	Flag CY	Skip condition
code	0	0	0	0 0	0	0	0	0	1	0	0	1	16	words	cycles		
		-			-				2				110	1	1	_	_
Operation:	Sy	stem	reset	i										Grouping:	Other oper	ration	
														Description	: System re:	set occurs.	
SST (Seria	al int	erfac	e tr	ansm	issic	n/red	cept	ion	STa	ırt)							
Instruction	D	9	1						D ₀]	Number of words	Number of cycles	Flag CY	Skip condition
	_ 1	0	1	0 0	1	1	1	1	0 2	2	9	Е	16	1	1	_	_
Operation:	(S	IOF) «	– 0											Grouping:	Serial inter	rface opera	ation
	Se	rial in	terfa	ce trar	ısmit/ı	eceiv	e sta	rting	1					Description	terface.	to SIOF fl	ag and starts serial in-
SUPT (Set Instruction code	t UP	9	g) 0	1 0	1	1	0	т	D ₀	0	5	9]	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	(U	PTF)	← 1											Grouping: Description	Other oper		order bit reference en-
														Description	able flag l instruction order 2 b	JPTF. Who (TABP p) oits of RO	en the table reference is executed, the high- M reference data is w-order 2 bits of regis-
SVDE (Set	t Vol	tage	Det	tector	Ena	ble f	lag)										
Instruction code	D:		1	0 0	1	0	0		D ₀	2	9	3]	Number of words	Number of cycles	Flag CY	Skip condition
		1 -		0 0				-	2				16	1	1	-	_
Operation:	Vo	ltage	drop	detect	ion ci	rcuit v	alid a	at R	AM b	ack-u	ıp			Grouping: Description Note:	at RAM ba This instru	the voltage ack-up. uction can	e drop detection circuit
															the H vers	IOII.	

	o if Zero, Bit)	•			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	l lag c l	
		1	1	_	(Mj(DP)) = 0 j = 0 to 3
Operation:	(Mj(DP)) = 0 ?	Grouping:	Bit operation	on	
	j = 0 to 3	Description	: Skips the	next instr	uction when the con-
			the immed	iate field) on the next ins	cified by the value j in of M(DP) is "0." struction when the continue is "1."
SZC (Skip	if Zero, Carry flag)				
Instruction code	D9 D0 0 0 0 1 0 1 1 1 1 0 2 F 40	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	(CY) = 0
Operation:	(CY) = 0 ?	Grouping:	Arithmetic		
•		Description	•		uction when the con-
			tents of ca	-	
				ping, the	CY flag remains un-
			changed.	harana da Cara	to a Cara and a settle a second
					struction when the con-
			tents of the	e CY flag is	5 T.
SZD (Skip	if Zero, port D specified by register Y)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1	words 2	cycles 2	_	(D(Y)) = 0
	0 0 0 0 1 0 1 0 1 1 ₂ 0 2 B ₁₆				(Y) = 0 to 3
Operation:	(D(Y)) = 0 ?	Grouping:	Input/Outp		
	(Y) = 0 to 3	Description			ction when a bit of port
			•		er Y is "0." Executes the
		Note:	(Y) = 0 to 3		the bit is "1."
		Note.			nstruction if values ex-
					register Y.
T1AB /Tro	nefor data to timor 1 and register P11 from Accumul	ator and ro	gictor B)		
Instruction	nsfer data to timer 1 and register R1L from Accumul	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 1 0 0 0 0 2 3 0	words	cycles	l lag 0 l	Only condition
0000	16	1	1	_	-
Operation:	$(R1L7-R1L4) \leftarrow (B)$	Grouping:	Timer oper	ration	
•	(T17–T14) ← (B)	Description	: Transfers	the conter	nts of register B to the
	$(R1L3-R1L0) \leftarrow (A)$		-		imer 1 and timer 1 re-
	$(T13-T10) \leftarrow (A)$		•		ansfers the contents of
			-		order 4 bits of timer 1
			and timer	1 reload re	gister R1L.

TALLAD /T	remeter data to reminter DALL from Accommissions and re	o minto v D\			
	ransfer data to register R1H from Accumulator and re			- o.	
Instruction code	D9 D0 1 0 0 1 0 0 1 0 2 9 2 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	$(R1H7-R1H4) \leftarrow (B)$	Grouping:	Timer oper	ation	
	(R1H3−R1H0) ← (A)	Description	high-order R1H. Trans	4 bits of t sfers the c	nts of register B to the rimer 1 reload register contents of register A to of timer 1 reload regis-
T1R1L (Tra	ansfer data to timer 1 from register R1L)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	$(T17-T10) \leftarrow (R1L7-R1L0)$	Grouping:	Timer oper		
		Description	: Transfers register R1		ents of timer 1 reload
	nsfer data to timer 2 and register R2L from Accumul		- -	1	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 1 0 0 0 1 1 2	1	1	_	-
Operation:	(R2L7–R2L4) ← (B)	Grouping:	Timer oper	ation	
орогинон.	$(T27-T24) \leftarrow (B)$				nts of register B to the
	$(R2L3-R2L0) \leftarrow (A)$ $(T23-T20) \leftarrow (A)$		load regist	er R2L. Trate to the low-	imer 2 and timer 2 re- ansfers the contents of order 4 bits of timer 2 gister R2L.
T2HAB (Tr	ansfer data to register R2H from Accumulator and re	egister B)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 1 0 1 0 1 2 2 9 4 16	words 1	cycles 1	_	_
			<u> </u>		
Operation:	(R2H7–R2H4) ← (B) (R2H3–R2H0) ← (A)	Grouping: Description	high-order R2H. Trans	the conter 4 bits of sfers the c	nts of register B to the timer 2 reload register ontents of register A to of timer 2 reload regis-

T2R2L (Tra	ansfer data to timer 2 from register R2L)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 1 0 1 0 1 2 2 9 5	1	1	-	_
Operation:	$(T27-T20) \leftarrow (R2L7-R2L0)$	Grouping:	Timer ope	ration	
operation.	(127 120) ((1227 1220)	Description		the conte	nts of timer 2 reload 2.
TAB (Trans	sfer data to Accumulator from register B)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 1 1 1 1 0 2 0 1 1 16	1	1	_	-
Operation:	(A) ← (B)	Grouping:	Register to		
·		Description	: Transfers ister A.	the conten	ts of register B to reg
TAB1 (Trar	nsfer data to Accumulator and register B from timer	·			
Instruction code	D9 D0 1 1 1 1 0 0 0 0 0 2 2 7 0 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	
Operation:	$(B) \leftarrow (T17 - T14)$	Grouping:	Timer oper		-l 4 b't /T4 T4 -)
	$(A) \leftarrow (T13-T10)$	Description	timer 1 to	-	der 4 bits (T17-T14) o
				-	der 4 bits (T13-T10) c
			timer 1 to I		
TAB2 (Tran	nsfer data to Accumulator and register B from timer	2)			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 1 1 0 0 0 1 2 2 7 1 16	1	1	-	_
Operation:	(B) ← (T27–T24) (A) ← (T23–T20)	Grouping: Description	timer 2 to 1	the high-or register B. the low-ord	der 4 bits (T27-T24) o

IADAD (II	ansfer da	<u>ta to /</u>	4ccur	nuia	tor a	nd r	egis	er E	from	regi	ster AD)			
Instruction	D9						D ₀				Number of	Number of	Flag CY	Skip condition
code	1 0) 1	1 1	1 1	0	0	1	2	7 9		words	cycles		
							2			<u></u> 16	1	1	_	-
Operation:	In A/D conv	ersion i	mode (0	Q13 =	: 0),						Grouping:	A/D conve	rsion oper	ation
•	$(B) \leftarrow (AD)$,,						Description	: In the A/D	conversior	mode (Q13 = 0), tran
	$(A) \leftarrow (AD)$	5-AD2)									fers the hig	h-order 4 b	its (AD9-AD6) of regist
	In compar	ator mo	ode (Q	13 =	1).							AD to regis	ster B, and	I the middle-order 4 bi
	(B) ← (AD		•		- /,							(AD5-AD2)	of register	r AD to register A. In th
	$(A) \leftarrow (AD)$		•									comparator	mode (Q1	3 = 1), transfers the high
	(Q13 : bit :		•	ol roc	aictor	O1)						order 4 bits	(AD7-AD	 of comparator registe
	(Q13.DIL) () A/L	J COITH	OI 16	gistei	Q1)						to register	B, and the	e low-order 4 bits (AD3
												AD ₀) of cor	nparator re	gister to register A.
TABE (Trar	nsfer data	to Ac	cumu	ulato	r and	d reg	giste	r B f	rom re	egist	er E)			
Instruction	D9						D ₀				Number of	Number of	Flag CY	Skip condition
code	0 0	0 0	1 0) 1	0	1	0	0	2 A		words	cycles		
							2	L	I – I ·	<u>`</u> 16	1	1	_	_
											ļ			
Operation:	$(B) \leftarrow (E_7 - E_7 - E_7$,									Grouping:	Register to		
	$(A) \leftarrow (E3 - E3 $	-Eo)									Description		-	order 4 bits (E7–E4) o
												-	-	B, and low-order 4 bit
												of register	E to regist	er A.
										_				
'		ta to	Accur	mula	ator a	nd r		ter E	3 from	Pro	gram mem		1 '	Chin andition
Instruction	D9						D ₀				Number of	Number of	Flag CY	Skip condition
Instruction	D9	ta to <i>i</i>		mula 04 p:		nd r		o ter E	8 from		Ť .		1 '	Skip condition
Instruction code	D9 0 0	1 0				p1	D0 p0 2	0	8 +p p	16	Number of words	Number of cycles	1 '	Skip condition
Instruction code	D9	1 0 P) + 1	0 p			p1	D ₀ p ₀ 2	0 g:	8 +p p	16	Number of words 1 operation	Number of cycles	Flag CY	<u> </u>
Instruction code	D9 0 0 0 (SP) ← (S (SK(SP)) ← (PCH) ← F	1 0 P) + 1 ← (PC)	0 p	04 p:		p1	D0 p0 2	0 g:	8 p	16 netic of	Number of words 1 operation its 7 to 4 to re	Number of cycles 3 gister B and b	Flag CY - its 3 to 0 to	- o register A. These bits
Instruction code	D9 $ \begin{array}{c c} \hline 0 & 0 \end{array} $ $ \begin{array}{c c} (SP) \leftarrow (S\\ (SK(SP)) \leftarrow (PCH) \leftarrow PCH) \leftarrow PCH $ $ \begin{array}{c c} (PCL) \leftarrow (PCH) \leftarrow PCH $	1 0 P) + 1 ← (PC) DR2–D	0 p	04 p:		p1	D ₀ p ₀ 2	0 g:	8 +p P Arithm Transi to 0 ai	netic of fers bere the gisters	Number of words 1 operation its 7 to 4 to re ROM pattern A and D in pa	Number of cycles 3 gister B and b in address (Dige p. When U	Flag CY - its 3 to 0 to R2 DR1 DR PTF is 1,	– o register A. These bits to A3 A2 A1 A0)2 specific Transfers bits 9, 8 to th
Instruction code	D9 0 0 0 (SP) ← (S (SK(SP)) ← (PCH) ← F	P) + 1 (PC) DR2-D DM(PC)	0 p	04 p:		p1	D ₀ p ₀ 2	0 g:	Arithm Transi to 0 ai by reg low-oi	netic of fers bre the pisters rder 2	Number of words 1 operation its 7 to 4 to re ROM pattern A and D in pa 2 bits (DR1, D	Number of cycles 3 gister B and b in address (Dige p. When UR0) of register	Flag CY - its 3 to 0 to R2 DR1 DR PTF is 1,	– o register A. These bits
Instruction code	$\begin{array}{c c} D9 \\ \hline 0 & 0 \\ \hline \end{array}$	P) + 1 (PC) DR2-D M(PC) 0 1	0 p	-A0)	3 p2	p1	D ₀ p ₀ 2	0 g:	Arithm Transi to 0 ai by reg low-oi signifi	netic of fers b re the spisters rder 2 cant I	Number of words 1 operation its 7 to 4 to re ROM pattern A and D in pa bits (DR1, D bit (DR2) of re	Number of cycles 3 gister B and b in address (Dige p. When URo) of register b.	Flag CY - its 3 to 0 to R2 DR1 DR PTF is 1, er D, and "	o register A. These bits to A3 A2 A1 A0)2 specific Transfers bits 9, 8 to th 0" is stored to the lea
Instruction code	$\begin{array}{c c} D9 \\ \hline 0 & 0 \\ \hline \end{array}$	P) + 1 (PC) DR2-D M(PC) M(PC) 1 R0) ←	0 p	-A0)	3 p2	Gro De	D ₀ p ₀ 2 oupin	0 g:	Arithm Transi to 0 ai by reg low-or signifi When	netic of fers b re the gisters rder 2 cant I	Number of words 1 operation its 7 to 4 to re ROM pattern A and D in pa bits (DR1, D bit (DR2) of re instruction is 6	Number of cycles 3 gister B and b in address (Dige p. When URo) of register b.	Flag CY - its 3 to 0 to R2 DR1 DR PTF is 1, er D, and "	– o register A. These bits to A3 A2 A1 A0)2 specific Transfers bits 9, 8 to th
Instruction code	$\begin{array}{c c} D_{\vartheta} \\ \hline 0 & 0 \\ \hline \end{array}$	P) + 1 ← (PC) DR2–D DM(PC) DM(PC) 1 R0) ←	0 p PRo, A3- 1)7-4 1)3-0 (ROM	-A0)	3 p2	Gro De	D ₀ p ₀ 2	0 g:	Arithm Transi to 0 ai by reg low-oi signifi When p is 0	netic of fers b re the gisters rder 2 icant I this i to 31	Number of words 1 operation its 7 to 4 to re ROM pattern A and D in pa 2 bits (DR1, D bit (DR2) of re instruction is 6	Number of cycles 3 gister B and b in address (Dige p. When URo) of register D. executed, 1 st	its 3 to 0 to R2 DR1 DR PTF is 1, and "age of star	o register A. These bits to A3 A2 A1 A0)2 specific Transfers bits 9, 8 to th 0" is stored to the lea
Instruction code	$\begin{array}{c c} D9 \\ \hline 0 & 0 \\ \hline \end{array}$	P) + 1 ← (PC) DR2–D DM(PC) 1 R0) ← · 0 K(SP))	0 p PRo, A3- 1)7-4 1)3-0 (ROM	-A0)	3 p2	Gro De	D ₀ p ₀ 2 oupin	0 g:	Arithm Transl to 0 all by reg low-or signifit When p is 0 When	netic of fers be re the gisters rder 2 cant I this i to 31 this i	Number of words 1 operation its 7 to 4 to re ROM pattern A and D in pa 2 bits (DR1, D bit (DR2) of re instruction is 6	Number of cycles 3 gister B and b in address (DI R0) of register D. executed, 1 st executed, be	Flag CY its 3 to 0 to R2 DR1 DR PTF is 1, er D, and " age of sta	o register A. These bits to A3 A2 A1 A0)2 specific Transfers bits 9, 8 to the 0" is stored to the leack register (SK) is use
Instruction	$ \begin{array}{c c} D_{\vartheta} \\ \hline 0 & 0 \\ \hline \end{array} $	P) + 1 (PC) DR2-D DM(PC) 1 R0) ← 0 K(SP)) P) - 1	0 pRo, A3-0)7-4 0)3-0 (ROM	-A0)	3 p2	group De	Do po 2 oupin escrip	0 ig: tion:	Arithm Transi to 0 ai by reg low-oi signifi When p is 0 When cause	netic offers being the position of the positio	Number of words 1 operation its 7 to 4 to re ROM pattern A and D in pa bit (DR1, D bit (DR2) of re instruction is e instruction is age of stack re	Number of cycles 3 gister B and b in address (DI R0) of register D. executed, 1 st executed, be	Flag CY its 3 to 0 to R2 DR1 DR PTF is 1, er D, and " age of sta	o register A. These bits to A3 A2 A1 A0)2 specific Transfers bits 9, 8 to the 0" is stored to the leack register (SK) is use
Instruction code Operation:	$ \begin{array}{c c} D_{\vartheta} \\ \hline 0 & 0 \\ \hline \end{array} $	P) + 1 (PC) DR2-D DM(PC) 1 R0) ← 0 K(SP)) P) - 1	0 pRo, A3-0)7-4 0)3-0 (ROM	-A0)	3 p2	group De	Do po 2 oupin escrip	0 ig: tion:	Arithm Transi to 0 ai by reg low-oi signifi When p is 0 When cause	netic offers being the position of the positio	Number of words 1 operation its 7 to 4 to re ROM pattern A and D in pa bit (DR1, D bit (DR2) of re instruction is e instruction is age of stack re	Number of cycles 3 gister B and b in address (Dige p. When URO) of register D. executed, 1 stepsister is used.	Flag CY its 3 to 0 to R2 DR1 DR PTF is 1, er D, and " age of sta	o register A. These bits to A3 A2 A1 A0)2 specific Transfers bits 9, 8 to the 0" is stored to the leack register (SK) is use
Instruction code Operation:	$\begin{array}{c c} D_9 \\ \hline 0 & 0 \\ \hline \end{array}$	P) + 1 (PC) DR2-D M(PC) M(PC) 1 R(0) ← 0 K(SP)) P) - 1 ta to F	0 p PR0, A3-))7-4))3-0 (ROM	-A0)	3 p2	p1 Gru	Do po 2 oupin escrip	g: tion:	Arithm Transl to 0 an by reg low-on signifi When p is 0 When cause from	netic of fers by re the episters rder 2 cant I this i to 31 a this end 1 start results 1 this signature.	Number of words 1 operation its 7 to 4 to re ROM pattern A and D in pa bit (DR2) of re instruction is a instruction is age of stack re Scaler)	Number of cycles 3 gister B and b in address (Di ge p. When U Ro) of register D. executed, 1 st executed, be egister is used	Flag CY - its 3 to 0 to R2 DR1 DR PTF is 1, er D, and " age of star	o register A. These bits to A3 A2 A1 A0)2 specific Transfers bits 9, 8 to th 0" is stored to the leack register (SK) is use of to over the stack b
Instruction code Operation: TABPS (Trainstruction	$\begin{array}{c c} D_{\vartheta} \\ \hline 0 & 0 \\ \hline \end{array}$	P) + 1 (PC) DR2-D DM(PC) 1 R0) ← 0 K(SP)) P) - 1	0 pRo, A3-0)7-4 0)3-0 (ROM	-A0)	3 p2	group De	Do po 2 oupin escrip	0 ig: tion:	Arithm Transi to 0 ai by reg low-oi signifi When p is 0 When cause	netic of fers b re the pisters rder 2 cant I this i to 31 this e 1 sta	Number of words 1 operation its 7 to 4 to re ROM pattern A and D in pa bit (DR2) of re instruction is a instruction is age of stack re Scaler) Number of	Number of cycles 3 gister B and b in address (Dige p. When URO) of register D. executed, 1 stepsister is used.	Flag CY - its 3 to 0 to R2 DR1 DR PTF is 1, er D, and " age of star	o register A. These bits to A3 A2 A1 A0)2 specific Transfers bits 9, 8 to th 0" is stored to the leack register (SK) is use of to over the stack b
Instruction code Operation: TABPS (Trainstruction	$\begin{array}{c c} D_9 \\ \hline 0 & 0 \\ \hline \end{array}$	P) + 1 (PC) DR2-D M(PC) M(PC) 1 R(0) ← 0 K(SP)) P) - 1 ta to F	0 p PR0, A3-))7-4))3-0 (ROM	-A0)	3 p2	p1 Gru	Do po 2 oupin escrip	g: tion:	Arithm Transl to 0 an by reg low-on signifi When p is 0 When cause from	netic of fers by re the episters rder 2 cant I this i to 31 a this end 1 start results 1 this signature.	Number of words 1 operation its 7 to 4 to re ROM pattern A and D in pa 2 bits (DR1, D bit (DR2) of re instruction is a ge of stack re Scaler) Number of words 1	Number of cycles 3 gister B and b in address (Di ge p. When UR0) of register D. executed, 1 st executed, be egister is used Number of cycles 1	Flag CY - its 3 to 0 to R2 DR1 DR PTF is 1, 7 er D, and " age of star careful not. Flag CY -	o register A. These bits to A3 A2 A1 A0)2 specific Transfers bits 9, 8 to th 0" is stored to the leack register (SK) is use of to over the stack b
Instruction code Operation: TABPS (Trainstruction code	$\begin{array}{c c} D_{\vartheta} \\ \hline 0 & 0 \\ \hline \end{array}$	P) + 1	0 p 0R0, A3- 0)7-4 0)3-0 (ROM) 1 1 1	-A0)	3 p2	p1 Gru	Do po 2 oupin escrip	g: tion:	Arithm Transl to 0 an by reg low-on signifi When p is 0 When cause from	netic of fers by re the episters rder 2 cant I this i to 31 a this end 1 start results 1 this signature.	Number of words 1 operation its 7 to 4 to re ROM pattern A and D in pa 2 bits (DR1, D bit (DR2) of re instruction is a ge of stack re Scaler) Number of words 1 Grouping:	Number of cycles 3 gister B and b in address (Di ge p. When U ge) of register D. executed, 1 st executed, be egister is used Number of cycles 1 Timer oper	Flag CY its 3 to 0 to R2 DR1 DR PTF is 1, er D, and " age of star careful nod. Flag CY - ration	o register A. These bits to A3 A2 A1 A0)2 specific Transfers bits 9, 8 to the 0" is stored to the least register (SK) is use to to over the stack but the st
Instruction code Operation: TABPS (Trainstruction code	$\begin{array}{c c} D_{9} \\ \hline 0 & 0 \\ \hline \end{array}$	P) + 1	0 p 0R0, A3- 0)7-4 0)3-0 (ROM) 1 1 1	-A0)	3 p2	p1 Gru	Do po 2 oupin escrip	g: tion:	Arithm Transl to 0 an by reg low-on signifi When p is 0 When cause from	netic of fers by re the episters rder 2 cant I this i to 31 a this end 1 start results 1 this signature.	Number of words 1 operation its 7 to 4 to re ROM pattern A and D in pa 2 bits (DR1, D bit (DR2) of re instruction is a ge of stack re Scaler) Number of words 1	Number of cycles 3 gister B and b in address (Di ge p. When URO) of register D. executed, 1 st executed, begister is used Number of cycles 1 Timer operations: Transfers	Flag CY its 3 to 0 to R2 DR1 DR PTF is 1, er D, and " age of star careful nod. Flag CY - ration the high-o	o register A. These bits to A3 A2 A1 A0)2 specific Transfers bits 9, 8 to th 0" is stored to the leack register (SK) is use of to over the stack b
Instruction code Operation: TABPS (Trainstruction code	$\begin{array}{c c} D_{\vartheta} \\ \hline 0 & 0 \\ \hline \end{array}$	P) + 1	0 p 0 R0, A3- 0)7-4 0)3-0 (ROM) 1 1 1	-A0)	3 p2	p1 Gru	Do po 2 oupin escrip	g: tion:	Arithm Transl to 0 an by reg low-on signifi When p is 0 When cause from	netic of fers by re the episters rder 2 cant I this i to 31 a this end 1 start results 1 this signature.	Number of words 1 operation its 7 to 4 to re ROM pattern A and D in pa 2 bits (DR1, D bit (DR2) of re instruction is a ge of stack re Scaler) Number of words 1 Grouping:	Number of cycles 3 gister B and b in address (D) ge p. When U Ro) of register D. executed, 1 st executed, be egister is used Number of cycles 1 Timer operators of the cycles to register storegister.	Flag CY - its 3 to 0 to R2 DR1 DR PTF is 1, er D, and " age of star careful nod. Flag CY - ration the high-o B.	o register A. These bits to A3 A2 A1 A0)2 specific Transfers bits 9, 8 to the O" is stored to the least of the over the stack bot to
Instruction code Operation: TABPS (Trainstruction code	$\begin{array}{c c} D_{\vartheta} \\ \hline 0 & 0 \\ \hline \end{array}$	P) + 1	0 p 0 R0, A3- 0)7-4 0)3-0 (ROM) 1 1 1	-A0)	3 p2	p1 Gru	Do po 2 oupin escrip	g: tion:	Arithm Transl to 0 an by reg low-on signifi When p is 0 When cause from	netic of fers by re the episters rder 2 cant I this i to 31 a this end 1 start results 1 this signature.	Number of words 1 operation its 7 to 4 to re ROM pattern A and D in pa 2 bits (DR1, D bit (DR2) of re instruction is a ge of stack re Scaler) Number of words 1 Grouping:	Number of cycles 3 gister B and b in address (Dige p. When URO) of register D. executed, 1 st executed, begister is used Number of cycles 1 Timer open in Transfers to register to re	Flag CY - its 3 to 0 to R2 DR1 DR PTF is 1, er D, and " age of star careful nod. Flag CY - ration the high-o B.	o register A. These bits to A3 A2 A1 A0)2 specific Transfers bits 9, 8 to the 0" is stored to the least register (SK) is use to to over the stack but the st
Instruction code Operation: TABPS (Trainstruction	$\begin{array}{c c} D_{\vartheta} \\ \hline 0 & 0 \\ \hline \end{array}$	P) + 1	0 p 0 R0, A3- 0)7-4 0)3-0 (ROM) 1 1 1	-A0)	3 p2	p1 Gru	Do po 2 oupin escrip	g: tion:	Arithm Transl to 0 an by reg low-on signifi When p is 0 When cause from	netic of fers by re the episters rder 2 cant I this i to 31 a this end 1 start results 1 this signature.	Number of words 1 operation its 7 to 4 to re ROM pattern A and D in pa 2 bits (DR1, D bit (DR2) of re instruction is a ge of stack re Scaler) Number of words 1 Grouping:	Number of cycles 3 gister B and b in address (D) ge p. When U Ro) of register D. executed, 1 st executed, be egister is used Number of cycles 1 Timer operators of the cycles to register storegister.	Flag CY - its 3 to 0 to R2 DR1 DR PTF is 1, er D, and " age of star careful nod. Flag CY - ration the high-o B.	o register A. These bits to A3 A2 A1 A0)2 specific Transfers bits 9, 8 to the O" is stored to the least of the over the stack bot to
Instruction code Operation: TABPS (Trainstruction code	$\begin{array}{c c} D_{\vartheta} \\ \hline 0 & 0 \\ \hline \end{array}$	P) + 1	0 p 0 R0, A3- 0)7-4 0)3-0 (ROM) 1 1 1	-A0)	3 p2	p1 Gru	Do po 2 oupin escrip	g: tion:	Arithm Transl to 0 an by reg low-on signifi When p is 0 When cause from	netic of fers by re the episters rder 2 cant I this i to 31 a this end 1 start results 1 this signature.	Number of words 1 operation its 7 to 4 to re ROM pattern A and D in pa 2 bits (DR1, D bit (DR2) of re instruction is a ge of stack re Scaler) Number of words 1 Grouping:	Number of cycles 3 gister B and b in address (Dige p. When URO) of register D. executed, 1 st executed, begister is used Number of cycles 1 Timer open in Transfers to register to re	Flag CY - its 3 to 0 to R2 DR1 DR PTF is 1, er D, and " age of star careful nod. Flag CY - ration the high-o B.	o register A. These bits to A3 A2 A1 A0)2 specific Transfers bits 9, 8 to the O" is stored to the least of the over the stack bot to
Instruction code Operation: TABPS (Trainstruction code	$\begin{array}{c c} D_{\vartheta} \\ \hline 0 & 0 \\ \hline \end{array}$	P) + 1	0 p 0 R0, A3- 0)7-4 0)3-0 (ROM) 1 1 1	-A0)	3 p2	p1 Gru	Do po 2 oupin escrip	g: tion:	Arithm Transl to 0 an by reg low-on signifi When p is 0 When cause from	netic of fers by re the replacement of the site of the	Number of words 1 operation its 7 to 4 to re ROM pattern A and D in pa 2 bits (DR1, D bit (DR2) of re instruction is a ge of stack re Scaler) Number of words 1 Grouping:	Number of cycles 3 gister B and b in address (Dige p. When URO) of register D. executed, 1 st executed, begister is used Number of cycles 1 Timer open in Transfers to register to re	Flag CY - its 3 to 0 to R2 DR1 DR PTF is 1, er D, and " age of star careful nod. Flag CY - ration the high-o B.	o register A. These bits to A3 A2 A1 A0)2 specific Transfers bits 9, 8 to the O" is stored to the least of the over the stack bot to

TABSI (Tra	ansfer data to Accumulator and register B from reg	ister SI)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 1 1 0 0 0 0 2 2 7 8 1	6 words	cycles 1	_	_
Operation:	$(B) \leftarrow (SI7-SI4) \ \ (A) \leftarrow (SI3-SI0)$	Grouping: Description	face regis	the high-or ter SI to re der 4 bits	ation der 4 bits of serial inter egister B, and transfer of serial interface regis
TAD (Trans	sfer data to Accumulator from register D)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
		6 1	1	_	_
Operation:	$(A2-A0) \leftarrow (DR2-DR0)$	Grouping:	Register to		
	(A₃) ← 0	Description Note:	low-order : When this	3 bits (A2– s instruction	nts of register D to the Ao) of register A. on is executed, "0" is B) of register A.
TADAB (T	ransfer data to register AD from Accumulator from	register B)			
Instruction code	D9 D0 1 1 0 0 0 1 1 1 0 0 1 2 3 9 1	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	_
Operation:	Q13 = 1: $(AD7-AD4) \leftarrow (B)$ $(AD3-AD0) \leftarrow (A)$ Q13 = 0: TADAB = NOP	Grouping: Description	the content bits (AD7-the content bits (AD3-In the A/D) struction is	parator months of regist AD4) of contents of regist AD0) of conconversion equivalent	ation ade (Q13 = 1), transfers er B to the high-order 4 amparator register, and er A to the low-order 4 apparator register. mode (Q13 = 0), this in- to the NOP instruction. and transfer in the transfer in t
TAI1 (Trans	sfer data to Accumulator from register I1)	'			
Instruction	D9 D0 1 0 1 0 0 1 1 2 5 3	Number of words	Number of cycles	Flag CY	Skip condition
		6 1	1	_	_
Operation:	(A) ← (I1)	Grouping: Description	Interrupt on: Transfers register I1	the conte	nts of interrupt control A.

	nsfer data to Accumulator from register J1)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 0 0 1 0 2 2 4 2 16	1	1	_	_
Operation:	(A) ← (J1)	Grouping:	Serial inter	face opera	tion
peration.	$(A) \leftarrow (31)$				nts of serial interfa
		·	control reg		
TAK0 (Tra	nsfer data to Accumulator from register K0)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	
Operation:	$(A) \leftarrow (K0)$	Grouping:	Input/Outp	ut operatio	n
		Description	: Transfers control reg		its of key-on wake register A.
	nsfer data to Accumulator from register K1)	I		I I	
Instruction code	D9 D0 1 0 1 1 0 0 1 2 5 9 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1		_
Operation:	$(A) \leftarrow (K1)$	Grouping:	Input/Outp		n nts of key-on wake
		Description	control reg		· ·
•	nsfer data to Accumulator from register K2)	ı			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 1 1 0 1 0 2 2 5 A 16	1	1	_	
		0	Innut/Outn	·	
Operation:	$(A) \leftarrow (K2)$	Grouping:	input/Outb	ut operatio	n

	E INSTRUCTIONS (INDEX BY ALPHABET)	(COIIIIII			
	nsfer data to Accumulator from register L1)			El 0)/	01: 1:::
Instruction code	D9 D0 1 0 0 1 0 1 0 2 4 A 16	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	(A) ← (L1)	Grouping:	Input/Outp	ut operation	on
Operation.	(1) ((21)	Description			nts of key-on wakeup
			control reg	ister L1 to	register A.
TALA (Trai	nsfer data to Accumulator from register LA)				
Instruction	D9 D0 1 0 0 1 0 0 1 0 2 4 9 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	-
Operation:	$(A3, A2) \leftarrow (AD1, AD0)$	Grouping:	A/D conve		
Cpcrunon:	$(A_1, A_0) \leftarrow 0$	Description	register AD	O to the hig A. "0" is st	der 2 bits (AD1, AD0) of gh-order 2 bits (A3, A2) ored to the low-order 2 er A.
TAM j (Tra	nsfer data to Accumulator from Memory)				
Instruction code	D9 D0 1 0 0 j j j j 2 C j 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	$(A) \leftarrow (M(DP))$	Grouping:	RAM to reg	-	
	$(X) \leftarrow (X)EXOR(j)$	Description		-	contents of M(DP) to
	j = 0 to 15		performed	between re mediate fie	sive OR operation is egister X and the value eld, and stores the re-
TAMR (Tra	ansfer data to Accumulator from register MR)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 1 0 1 0 0 1 0 2 2 5 2	1	1	_	-
Operation:	(A) ← (MR)	Grouping:	Clock oper	ration	
•		Description	ister MR to		ts of clock control reg-

TAPU0 (Tr	ansfer da	ita to	Accı	ımu	lator	fron	n reg	giste	r Pl	J0)					
Instruction	D9		1 0	1		1 1	D	- 0 7 [7 16	Number of words	Number of cycles	Flag CY	Skip condition
	1 0	0	1 0		0	' '	<u> </u>	_ 2		<u> </u>	′ 16	1	1	_	_
Operation:	(A) ← (P	U0)										Grouping:		ut operatio	
												Description	: Transfers register PU	the conte J0 to regist	nts of pull-up contro
TAPU1 (Tr	ansfer da	ata to	Accı	umul	lator	fron	n reg	giste	er Pl	J1)		<u> </u>			
Instruction	D9		1 0	1		1 1	D	0			E 16	Number of words	Number of cycles	Flag CY	Skip condition
											10	1	1	_	_
Operation:	(A) ← (P	U1)										Grouping:	Input/Outp		
												Description		the conte J1 to regist	nts of pull-up contro er A.
TAPU2 (Tr	ansfer da	ıta to	Accı	umul	lator	fron	n reç	giste	r Pl	J2)		1			
Instruction code	D9	0 1	1 0	1	1	1 1	1		2	5	F 16	Number of words	Number of cycles	Flag CY	Skip condition
										·		1	1	_	_
Operation:	$(A) \leftarrow (P$	U2)										Grouping:	Input/Outp		
												Description		The Conte	nts of pull-up contro er A.
TAQ1 (Tra	nsfer data	a to A	Accur	nula	tor fr	om	regi	ster	Q1))					
Instruction code	D9			I . I	_		D		_ 1			Number of words	Number of cycles	Flag CY	Skip condition
code	1 0	0 1	1 0	0	0	1 0	0	」 2	2	4	16	1	1	-	_
Operation:	(A) ← (Q	1)										Grouping:	A/D conve		
												Description	: Transfers ter Q1 to re		s of A/D control regis-

TASP (Trai	nsfer data to Accumulator from Stack Pointer)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 0 0 0 0 0 5 0	words	cycles		
	0 0 0 1 0 1 0 0 0 0 2	1	1	_	_
Operation:	$(A2-A0) \leftarrow (SP2-SP0)$	Grouping:	Register to	register tr	ansfer
oporation.	$(A3) \leftarrow 0$	Description			s of stack pointer (SP)
	(7.5) (0				(A2-A0) of register A.
			"0" is store	d to the bit	3 (A3) of register A.
TAV1 (Trar	nsfer data to Accumulator from register V1)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 0 1 0 0 2 0 5 4	words	cycles		
		1	1	-	
Operation:	$(A) \leftarrow (V1)$	Grouping:	Interrupt of		
•		Description	: Transfers	the conter	its of interrupt control
			register V1		
	nsfer data to Accumulator from register V2)	1		I =	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 1 0 1 0 1 2 0 5 5	1	1	_	_
Operation:	(A) ← (V2)	Grouping:	Interrupt or	ll peration	
	(-) ()				its of interrupt control
			register V2	to registe	r A.
TAW1 (Tra	nsfer data to Accumulator from register W1)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 0 1 0 1 1 ₂ 2 4 B ₁₆	1	1	-	-
Operation:	(A) ← (W1)	Grouping:	Timer oper	ation	
Operation.	(A) ← (W1)	Description		the conten	ts of timer control reg-

TAW2 (Tra	nsfer data to Accumulator from register W2)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 0 1 1 0 0 1 1 0 0 ₂ 2 4 C ₁₆	1	1	_	
		'	ı		_
Operation:	(A) ← (W2)	Grouping:	Timer oper		
		Description		the content register A.	s of timer control re
TAW5 (Tra	nsfer data to Accumulator from register W5)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	(A) ← (W5)	Grouping:	Timer oper	ration	
operation.	(A) ← (W3)		: Transfers		s of timer control reg
· · · · · ·	nsfer data to Accumulator from register W6)	Number	NI h f	[FI= :: 0\/	Older and differen
Instruction code	D9 D0 1 0 0 1 0 1 0 0 0 0 0 2 2 5 0 16	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	$(A) \leftarrow (W6)$	Grouping:	Timer oper		s of timer control reg
				register A.	_
	sfer data to Accumulator from register X)	1	I		
Instruction code	D9 D0 0 0 1 0 1 0 0 1 0 0 5 2	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 1 0 1 0 0 1 0 2 0 5 2	1	1	_	-
Operation:	$(A) \leftarrow (X)$	Grouping:		register tr	
		Description	: Transfers	the conten	ts of register X to reg

	efer data to Accumulator from register Y)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	l lag c l	
	0 0 0 0 1 1 1 1 2 0 1 1 16	1	1	_	-
Operation:	$(A) \leftarrow (Y)$	Grouping:	Register to	register tr	ansfer
•					s of register Y to regis-
			ter A.		
TAZ (Trans	sfer data to Accumulator from register Z)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 0 0 1 1 2 0 5 3	words	cycles	i lag o i	Chip condition
		1	1		
Operation:	$(A1,A0) \leftarrow (Z1,Z0)$	Grouping:	Register to		ransfer nts of register Z to the
	$(A3, A2) \leftarrow 0$	Description	low-order 2	2 bits (A1,	Ao) of register A. "O" is rder 2 bits (A3, A2) of
TBA (Trans	sfer data to register B from Accumulator)				
Instruction code	D9 D0 0 0 0 0 1 1 1 0 0 0 E 40	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	$(B) \leftarrow (A)$	Grouping:	Register to		
		Description	: Transfers t ter B.	the content	s of register A to regis-
	sfer data to register D from Accumulator)			· ·	
Instruction code	D9 D0 0 0 1 0 1 0 0 1 0 2 9 4c	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	$(DR2-DR0) \leftarrow (A2-A0)$	Grouping:	Register to	register tr	ansfer
		Description			nts of the low-order 3 er A to register D.

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)					
TEAB (Transfer data to register E from Accumulator and register B)					
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 1 1 0 1 0 2 0 1 A	1	1	_	_
		On a combination	Danistanta		
Operation:	(E7–E4) ← (B)	Grouping: Register to register transfer Description: Transfers the contents of register B to the			
	$(E3-E0) \leftarrow (A)$	Description			•
			-		-E ₀) of register E, and
		the contents of register A to the low-order 4 bits (E3–E0) of register E.			
TFR0A (Tr	ansfer data to register FR0 from Accumulator)	•			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 0 0 0 2 2 2 8 16	words 1	cycles 1	_	
Operation:	$(FR0) \leftarrow (A)$	Grouping: Input/Output operation			
			output stru	cture contr	oi register FRO.
TFR1A (Tr	ansfer data to register FR1 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 0 1 2 2 9 16	words 1	cycles 1	_	
Operation:	$(FR1) \leftarrow (A)$	Grouping: Input/Output operation Description: Transfers the contents of register A to port			
		output structure control register FR1.			
TFR2A (Transfer data to register FR2 from Accumulator)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 0 1 0 2 2 A	words	cycles	l lag 01	Chip condition
	16	1	1	_	_
Operation:	(FR2) ← (A)	Grouping: Input/Output operation			
h		Description: Transfers the contents of register A to port			
		output structure control register FR2.			

TEDOA /T-	constant data to resistant EDO from Accomplated				
	ransfer data to register FR3 from Accumulator)	I		T=: 0\(\)	011
Instruction code	D9 D0 1 0 1 0 1 1 2 2 B 16	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1	1	1	-	_
Operation:	(FR3) ← (A)	Grouping:	Input/Outp		
		Description			ts of register A to port ol register FR3.
TI1A (Tran	sfer data to register I1 from Accumulator)	1			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	
Operation:	$(I1) \leftarrow (A)$	Grouping:	Interrupt o		
		Description	: Transfers t rupt contro		s of register A to inter-
TJ1A (Tran	nsfer data to register J1 from Accumulator)				
Instruction code	D9 D0 1 0 0 0 0 0 1 0 2 0 2 4c	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	$(J1) \leftarrow (A)$	Grouping:	Serial inter		
		Description	interface o		s of register A to serial
	nsfer data to register K0 from Accumulator)	T	I	I =	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 1 1 0 1 1 ₂ 2 1 B ₁₆	1	1	_	-
Operation:	(K0) ← (A)	Grouping:	Input/Outp	ut operatio	n
		Description	: Transfers to on wakeup		ts of register A to key- gister K0.

TK1A (Tra	nsfer data to register K1 from Accumulator)				
Instruction		Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 1 0 1 0 0 2 2 1 4 16	words	cycles		
		1	1	_	_
Operation:	(K1) ← (A)	Grouping:	Input/Outp	ut operatio	n
•		Description			ts of register A to key-
			on wakeup	control re	gister K1.
TK2A (Tra	nsfer data to register K2 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 1 0 1 0 1 2 2 1 5	words	cycles		
		1	1	_	_
Operation:	(K2) ← (A)	Grouping:	Input/Outp	ut operatio	n
оролишени	()	Description			ts of register A to key-
TL1A (Tran	nsfer data to register L1 from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 0 1 0 1 0 1 0 ₂ 2 0 A ₁₆	1	1	_	_
Operation:	(L1) ← (A)	Grouping:	Input/Outp	ut operatio	n
		Description	: Transfers	the conten	ts of register A to key-
			on wakeup	control re	gister L1.
	nsfer data to Memory from Accumulator)	Ni. mala an af	November of	Flar CV	Chin andition
Instruction code	D9 D0 1 0 1 1 j j j j 2 B j 4c	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 1 0 1 1 j j j j ₂ 2 B j ₁₆	1	1	_	-
Operation:	$(M(DP)) \leftarrow (A)$	Grouping:	RAM to reg		
	$(X) \leftarrow (X)EXOR(j)$ j = 0 to 15	Description	contents of register A re OR operation is perster X and the value july, and stores the result		

	enstructions (INDEX BY ALPHABET)	(contine	ueu)		
	ansfer data to register MR from Accumulator)	Number of	Number of	Flor CV	Skip condition
Instruction code	D9 D0 1 0 1 1 0 2 1 6 16	words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Onenstiens	(MD) . (A)	Grouping:	Clock ope	ration	
Operation:	$(MR) \leftarrow (A)$	Description			ts of register A to clock
			control reg	ister MR.	
TPAA (Tra	nsfer data to register PA from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 1 0 1 0 1 0 ₂ 2 A A ₁₆	words	cycles		
	10	1	1	_	_
Operation:	(PA0) ← (A0)	Grouping:	Timer ope	ration	
•		Description	: Transfers	the least si	gnificant bit of register
TDCAD /T	repoter data to Dro Cooler and register DDC from As	aumulatar.	and ragista	∞ D\	
	ransfer data to Pre-Scaler and register RPS from Ac				
Instruction code	D9 D0 1 1 0 1 0 1 2 3 5 to	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	$(RPS7-RPS4) \leftarrow (B)$	Grouping:	Timer oper	ration	
	$(TPS7\text{-}TPS4) \leftarrow (B)$	Description			its of register B to the
	$(RPS3\text{-}RPS0) \leftarrow (A)$		•		rescaler and prescaler
	$(TPS3-TPS0) \leftarrow (A)$		_		Transfers the contents
			•		e low-order 4 bits of caler reload register
TPU0A (Tr	ansfer data to register PU0 from Accumulator)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 1 1 0 1 ₂ 2 2 D ₁₆	1	1	_	_
Operation:	(PU0) ← (A)	Grouping:	Input/Outp	ut operation	n
		Description	: Transfers up control		ts of register A to pull- J0.

	E INSTRUCTIONS (INDEX BY ALPHABET)	(Continu	ueu)		
	ansfer data to register PU1 from Accumulator)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 1 1 1 0 ₂ 2 2 E ₁₆	1	1	_	-
Operation:	(PU1) ← (A)	Grouping:	Input/Outp	ut operation	n
Operation.	$(FOI) \leftarrow (A)$			•	ts of register A to pull-
		·	up control		_
TPU2A (Tr	ansfer data to register PU2 from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
Jour	1 0 0 0 1 0 1 1 1 1 1 ₂ 2 2 F ₁₆	1	1	-	-
Operation:	(PU2) ← (A)	Grouping:	Input/Outp	ut operation	n
		Description	: Transfers		ts of register A to pull-
TQ1A (Tra	nsfer data to register Q1 from Accumulator) D9 D0 1 0 0 0 0 0 0 1 0 0 2 2 0 4 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	
Operation:	$(Q1) \leftarrow (A)$	Grouping:	A/D conve		ation Its of register A to A/D
		Description	control reg		its of register A to A/D
TRGA (Tra	insfer data to register RG from Accumulator)				
Instruction code	D9 D0 1 0 0 0 9 40	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	$(RG0) \leftarrow (A0)$	Grouping:	Clock oper		
		Description			significant bit (A0) of ntrol regiser RG.

	ansfer data to register SI from Accumulator)					
Instruction	D9 D0		Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 1 1 1 0 0 0 0 2 2 3	8 8 16	1	1	_	_
Operation:	$(SI7-SI4) \leftarrow (B) (SI3-SI0) \leftarrow (A)$		Grouping:	Serial inter	rface opera	ation
operation.	(817 814) ((2) (818 810) ((7)					nts of register B to th
						serial interface registe
						contents of register
						•
				register SI		oits of serial interfac
TV1A (Trar	nsfer data to register V1 from Accumulator)					
Instruction	D9 D0		Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 1 1 1 1 1 2 0 3	F 16	words	cycles		'
		10	1	1	_	_
Operation:	(V1) ← (A)		Grouping:	Interrupt of	peration	
			Description	: Transfers t	he conten	ts of register A to inter
				rupt contro	I register \	/1.
	nsfer data to register V2 from Accumulator)					
Instruction	D9 D0		Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 1 1 1 1 0 2 0 3	E 16	words	cycles		
	2	16	1	1	-	_
Operation:	(V2) ← (A)		Grouping:	Interrupt of	peration	
				· Transfers t	he conten	ts of register A to inter
•			Description			-
			Description	rupt contro	l register \	-
•	nsfer data to register W1 from Accumulator)			rupt contro		V2.
Instruction	D9 D0		Number of words		Flag CY	-
Instruction	,		Number of	rupt contro		V2.
Instruction code	D9 D0 1 0 0 0 0 1 1 1 0 0 2 2 0	I F	Number of words	Number of cycles	Flag CY	√2. Skip condition
Instruction code	D9 D0	I F	Number of words 1 Grouping:	Number of cycles 1 Timer oper	Flag CY - ation the conten	√2. Skip condition
Instruction	D9 D0 1 0 0 0 0 1 1 1 0 0 2 2 0	I F	Number of words 1 Grouping:	Number of cycles 1 Timer oper	Flag CY - ation the conten	Skip condition

D9 D0 D0 D0 D D0 D0 D0 D0 D0 D0 D0 D0 D0 D	Number of words	Number of	Flag CY	Skip condition
1 0 0 0 0 1 1 1 1 2 0 E		I MUITIDEL OF		
		cycles	i ag c i	Skip condition
	1	1	_	_
(W2) ← (A)	Grouping:	Timer ope	ration	
$(WZ) \leftarrow (H)$				ts of register A to time
		control reg	jister W2.	
ansfer data to register W5 from Accumulator)				
D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
1 0 0 0 0 1 0 0 1 0 2 2 1 2 16	1	1	_	-
(W5) ← (A)	Grouping:	Timer oper	ation	
(1.3) ((1)	Description			s of register A to time
ansfer data to register W6 from Accumulator)				
D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
1 0 0 0 0 1 0 0 1 1 2 2 1 3 16	1	1	_	_
(W6) ← (A)	Grouping:			
	Description	: Transfers t	he content	s of register A to time
		control reg	ister W6.	
sfer data to register Y from Accumulator)				
D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
0 0 0 0 0 0 1 1 1 0 0 2 0 0 0 16	1	1	_	-
(Y) ← (A)	Grouping:			
	Description	: Transfers t ter Y.	he content	s ot register A to regis
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ansfer data to register W5 from Accumulator) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

WRST (Wa	atchdog timer ReSeT)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 1 0 0 0 0 0 0 ₂ 2 A 0 ₁₆	1	1	_	(WDF1) = 1
Operation:	(WDF1) = 1 ?	Grouping:	Other ope	ration	
орегиноп.	(WDF1) ← 0	Description			DF1 flag and skips th
	` ,		WDF1 is " ecutes the watchdog	1." When to next instoletimer function	en watchdog timer fla he WDF1 flag is "0," ex ruction. Also, stops th tion when executing th immediately after th
XAM j (eX	change Accumulator and Memory data)				
Instruction code	D9 D0 1 1 0 1 j j j j 2 2 D j 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	_
Operation:	$(A) \leftarrow \rightarrow (M(DP))$	Grouping:	RAM to reg		
	$(X) \leftarrow (X)EXOR(j)$ j = 0 to 15	2000 I pilo	with the co OR operat ter X and t	ontents of rition is perfitched	ne contents of M(DP) register A, an exclusive formed between regisin the immediate field, in register X.
XAMD j (e	Xchange Accumulator and Memory data and Decrer	nent regist	er Y and sk	(ip)	
Instruction code	D9 D0 1 1 1 1 1 j j j j 2 2 F j 46	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	(Y) = 15
Operation:	$(A) \leftarrow \rightarrow (M(DP))$	Grouping:	RAM to req	jister trans	sfer
	$(X) \leftarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$ $(Y) \leftarrow (Y) - 1$	Description	with the co OR operat ter X and t and stores Subtracts As a resul tents of reg is skipped.	intents of r ion is perf he value j the result 1 from the it of subtra gister Y is When the	ne contents of M(DP) register A, an exclusive formed between regisin the immediate field, in register X. contents of register Y. action, when the con-15, the next instruction contents of register Y struction is executed.
XAMI j (eX	Change Accumulator and Memory data and Increme	ent register	Y and skip)	
Instruction code	D9 D0 1 1 1 0 j j j j 2 E j ₁₆	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	(Y) = 0
Operation:	$(A) \longleftrightarrow (M(DP))$ $(X) \longleftrightarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$ $(Y) \longleftrightarrow (Y) + 1$	Grouping: Description	with the co OR operat ter X and t and stores Adds 1 to t sult of ac register Y skipped. W	nanging the partents of retion is perfect the value just the result the content dition, we will be content to the content the	register A, an exclusive formed between registing the immediate field, in register X. Its of register Y. As a rethen the contents of enext instruction is ontents of register y is ction is executed.

MACHINE INSTRUCTIONS (INDEX BY TYPES)

	INE INS			- 10	143						1 -	-3)					
Parameter						In	stru	ction	cod	е					er of ds	er of es	Function
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	Hexa	ade otati		Number of words	Number of cycles	Function
	TAB	0	0	0	0	0	1	1	1	1	0	0	1	E	1	1	(A) ← (B)
	ТВА	0	0	0	0	0	0	1	1	1	0	0	0	E	1	1	(B) ← (A)
	TAY	0	0	0	0	0	1	1	1	1	1	0	1	F	1	1	$(A) \leftarrow (Y)$
1	TYA	0	0	0	0	0	0	1	1	0	0	0	0	С	1	1	$(Y) \leftarrow (A)$
ransfer	TEAB	0	0	0	0	0	1	1	0	1	0	0	1	Α	1	1	(E7–E4) ← (B) (E3–E0) ← (A)
Register to register transfer	TABE	0	0	0	0	1	0	1	0	1	0	0	2	Α	1	1	(B) ← (E7–E4) (A) ← (E3–E0)
r to r	TDA	0	0	0	0	1	0	1	0	0	1	0	2	9	1	1	(DR2−DR0) ← (A2−A0)
Registe	TAD	0	0	0	1	0	1	0	0	0	1	0	5	1	1	1	$ (A_2-A_0) \leftarrow (DR_2-DR_0) $ $ (A_3) \leftarrow 0 $
	TAZ	0	0	0	1	0	1	0	0	1	1	0	5	3	1	1	$(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$
	TAX	0	0	0	1	0	1	0	0	1	0	0	5	2	1	1	$(A) \leftarrow (X)$
	TASP	0	0	0	1	0	1	0	0	0	0	0	5	0	1	1	$(A_2-A_0) \leftarrow (SP_2-SP_0)$ $(A_3) \leftarrow 0$
	LXY x, y	1	1	Х3	X2	X1	X 0	уз	у2	y1	у0	3	х	у	1	1	$(X) \leftarrow x \ x = 0 \text{ to } 15$ $(Y) \leftarrow y \ y = 0 \text{ to } 15$
sesse.	LZ z	0	0	0	1	0	0	1	0	Z1	Z 0	0	4	8 +z	1	1	$(Z) \leftarrow z z = 0 \text{ to } 3$
RAM addresses	INY	0	0	0	0	0	1	0	0	1	1	0	1	3	1	1	$(Y) \leftarrow (Y) + 1$
	DEY	0	0	0	0	0	1	0	1	1	1	0	1	7	1	1	$(Y) \leftarrow (Y) - 1$
	ТАМ ј	1	0	1	1	0	0	j	j	j	j	2	С	j	1	1	$ \begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array} $
transfer	XAM j	1	0	1	1	0	1	j	j	j	j	2	D	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array} $
RAM to register transfer	XAMD j	1	0	1	1	1	1	j	j	j	j	2	F	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array} $
RAI	XAMI j	1	0	1	1	1	0	j	j	j	j	2	Ε	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) + 1 \end{array} $
	ТМА ј	1	0	1	0	1	1	j	j	j	j	2	В	j	1	1	$(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15

	_	
Skip condition	Carry flag CY	Datailed description
_	_	Transfers the contents of register B to register A.
_	_	Transfers the contents of register A to register B.
_	_	Transfers the contents of register Y to register A.
-	_	Transfers the contents of register A to register Y.
-	_	Transfers the contents of register B to the high-order 4 bits (E7–E4) of register E, and the contents of register A to the low-order 4 bits (E3–E0) of register E.
-	_	Transfers the high-order 4 bits (E7–E4) of register E to register B, and low-order 4 bits of register E to register A.
-	_	Transfers the contents of the low-order 3 bits (A2–A0) of register A to register D.
-	_	Transfers the contents of register D to the low-order 3 bits (A2–A0) of register A. "0" is stored to the bit 3 (A3) of register A.
-	_	Transfers the contents of register Z to the low-order 2 bits (A ₁ , A ₀) of register A. "0" is stored to the high-order 2 bits (A ₃ , A ₂) of register A.
-	_	Transfers the contents of register X to register A.
-	_	Transfers the contents of stack pointer (SP) to the low-order 3 bits (A2–A0) of register A. "0" is stored to the bit 3 (A3) of register A.
Continuous description	_	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
-	_	Loads the value z in the immediate field to register Z.
(Y) = 0	_	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.
(Y) = 15	_	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
-	-	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
-	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
(Y) = 0	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. when the contents of register Y is not 0, the next instruction is executed.
-	-	After transferring the contents of register A to M(DP), an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.

Parameter							nstru								r of		
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀			cimal	Number of words	Number of cycles	Function
	LA n	0	0	0	1	1	1	n	n	n	n	0	7	n	1	1	(A) ← n n = 0 to 15
	ТАВР р	0	0	1	0	0	p4	рз	p2	p1	ро	0	8 +;	p D	1	3	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ $(B) \leftarrow (ROM(PC))7-4$ $(A) \leftarrow (ROM(PC))3-0$ (UPTF) = 1 $(DR1, DR0) \leftarrow (ROM(PC))9, 8$ $(DR2) \leftarrow 0$ $(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
ration	АМ	0	0	0	0	0	0	1	0	1	0	0	0	Α	1	1	$(A) \leftarrow (A) + (M(DP))$
Arithmetic operation	AMC	0	0	0	0	0	0	1	0	1	1	0	0	В	1	1	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$
Arithme	A n	0	0	0	1	1	0	n	n	n	n	0	6	n	1	1	$(A) \leftarrow (A) + n$ $n = 0 \text{ to } 15$
	AND	0	0	0	0	0	1	1	0	0	0	0	1	8	1	1	$(A) \leftarrow (A) \text{ AND } (M(DP))$
	OR	0	0	0	0	0	1	1	0	0	1	0	1	9	1	1	$(A) \leftarrow (A) OR (M(DP))$
	sc	0	0	0	0	0	0	0	1	1	1	0	0	7	1	1	(CY) ← 1
	RC	0	0	0	0	0	0	0	1	1	0	0	0	6	1	1	(CY) ← 0
	szc	0	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY) = 0 ?
	СМА	0	0	0	0	0	1	1	1	0	0	0	1	С	1	1	$(A) \leftarrow (\overline{A})$
	RAR	0	0	0	0	0	1	1	1	0	1	0	1	D	1	1	CY A3A2A1A0
	SB j	0	0	0	1	0	1	1	1	j	j	0	5	C +j	1	1	(Mj(DP)) ← 1 j = 0 to 3
Bit operation	RB j	0	0	0	1	0	0	1	1	j	j	0	4	C +j	1	1	$(Mj(DP)) \leftarrow 0$ j = 0 to 3
Bit o	SZB j	0	0	0	0	1	0	0	0	j	j	0	2	j	1	1	(Mj(DP)) = 0 ? j = 0 to 3
no	SEAM	0	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP))?
Comparison	SEA n	0	0	0	0	1	0	0 n	1 n	0 n	1 n		2	5 n	2	2	(A) = n? n = 0 to 15

Note :p is 0 to 31.

Skip condition	Carry flag CY	Datailed description
Continuous description	_	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
_	-	Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When UPTF is 1, Transfers bits 9, 8 to the low-order 2 bits (DR1, DR0) of register D, and "0" is stored to the least significant bit (DR2) of register D. When this instruction is executed, 1 stage of stack register (SK) is used.
_	_	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	_	Adds the value n in the immediate field to register A, and stores a result in register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.
-	-	Takes the AND operation between the contents of register A and the contents of M(DP), and stores the result in register A.
-	_	Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A.
_	1	Sets (1) to carry flag CY.
-	0	Clears (0) to carry flag CY.
(CY) = 0	_	Skips the next instruction when the contents of carry flag CY is "0."
_	-	Stores the one's complement for register A's contents in register A.
_	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
_	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
-	_	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	_	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0." Executes the next instruction when the contents of bit j of M(DP) is "1."
(A) = (M(DP))	-	Skips the next instruction when the contents of register A is equal to the contents of M(DP). Executes the next instruction when the contents of register A is not equal to the contents of M(DP).
(A) = n n = 0 to 15	_	Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field.

Parameter						In	stru	ction	n cod	e					er of	er of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀			ecimal tion	Number of words	Number of cycles	Function
	Ва	0	1	1	a 6	a 5	a4	аз	a2	a1	a ₀	1	8	a a	1	1	(PCL) ← a6–a0
ation	BL p, a	0	0	1	1	1	p4	рз	p2	p 1	po	0	E +	p p	2		(PCH) ← p (Note) (PCL) ← a6–a0
Branch operation		1	0	0	a 6	a 5	a4	аз	a2	a1	ao	2	а	а			
Bran	BLA p	0	0	0	0	0	1	0	0	0	0	0	1	0	2		(PCH) ← p (Note) (PCL) ← (DR2–DR0, A3–A0)
		1	0	0	p4	0	0	рз	p2	p1	po	2	p	р			
	ВМ а	0	1	0	a 6	a 5	a4	a 3	a2	a1	a 0	1	а	а	1	1	(SP) ← (SP) + 1 (SK(SP)) ← (PC) (PCH) ← 2 (PCL) ← a6–a0
Subroutine operation	BML p, a	0	0	1	1	0	p4	рз	p2	р1	po	0	C +	p p	2	2	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$
outine		1	0	0	a6	a 5	a 4	аз	a2	a1	ao	2	а	а			(PCL) ← a6–a0
Subre	BMLA p	0	0	0	0	1	1	0	0	0	0	0	3	0	2	2	(SP) ← (SP) + 1 (SK(SP)) ← (PC)
		1	0	0	p4	0	0	рз	p2	p1	po	2	p	p			$(PCH) \leftarrow p \text{ (Note)}$ $(PCL) \leftarrow (DR2-DR0,A3-A0)$
	RTI	0	0	0	1	0	0	0	1	1	0	0	4	6	1	1	
Return operation	RT	0	0	0	1	0	0	0	1	0	0	0	4	4	1	2	(PC) ← (SK(SP)) (SP) ← (SP) – 1
Retui	RTS	0	0	0	1	0	0	0	1	0	1	0	4	5	1	2	(PC) ← (SK(SP)) (SP) ← (SP) − 1
Noto : p io (

Note :p is 0 to 31.

Skip condition	Carry flag CY	Datailed description
-	_	Branch within a page : Branches to address a in the identical page.
-	_	Branch out of a page : Branches to address a in page p.
-	_	Branch out of a page: Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	-	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
-	_	Call the subroutine : Calls the subroutine at address a in page p.
-	_	Call the subroutine: Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
_	_	Returns from interrupt service routine to main routine. Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous description of the LA/LXY instruction, register A and register B to the states just before interrupt.
_	_	Returns from subroutine to the routine called the subroutine.
Skip at uncondition	_	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.

Parameter						In	stru	ction	cod	e					r of s	er of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀		ade otati	cimal on	Number of words	Number of cycles	Function
	DI	0	0	0	0	0	0	0	1	0	0	0	0	4	1	1	(INTE) ← 0
	EI	0	0	0	0	0	0	0	1	0	1	0	0	5	1	1	(INTE) ← 1
	SNZ0	0	0	0	0	1	1	1	0	0	0	0	3	8	1	1	V10 = 0: (EXF0) = 1 ? (EXF0) ← 0 V10 = 1: SNZ0 = NOP
ation	SNZI0	0	0	0	0	1	1	1	0	1	0	0	3	Α	1	1	l12 = 0 : (INT) = "L" ?
Interrupt operation																	l12 = 1 : (INT) = "H" ?
ntern	TAV1	0	0	0	1	0	1	0	1	0	0	0	5	4	1	1	(A) ← (V1)
_	TV1A	0	0	0	0	1	1	1	1	1	1	0	3	F	1	1	(V1) ← (A)
	TAV2	0	0	0	1	0	1	0	1	0	1	0	5	5	1	1	(A) ← (V2)
	TV2A	0	0	0	0	1	1	1	1	1	0	0	3	Е	1	1	(V2) ← (A)
	TAI1	1	0	0	1	0	1	0	0	1	1	2	5	3	1	1	$(A) \leftarrow (I1)$
	TI1A	1	0	0	0	0	1	0	1	1	1	2	1	7	1	1	(I1) ← (A)
	TPAA	1	0	1	0	1	0	1	0	1	0	2	Α	Α	1	1	(PAo) ← (Ao)
	TAW1	1	0	0	1	0	0	1	0	1	1	2	4	В	1	1	(A) ← (W1)
	TW1A	1	0	0	0	0	0	1	1	1	0	2	0	Ε	1	1	(W1) ← (A)
	TAW2	1	0	0	1	0	0	1	1	0	0	2	4	С	1	1	(A) ← (W2)
	TW2A	1	0	0	0	0	0	1	1	1	1	2	0	F	1	1	(W2) ← (A)
	TAW5	1	0	0	1	0	0	1	1	1	1	2	4	F	1	1	(A) ← (W5)
	TW5A	1	0	0	0	0	1	0	0	1	0	2	1	2	1	1	(W5) ← (A)
	TAW6	1	0	0	1	0	1	0	0	0	0	2	5	0	1	1	(A) ← (W6)
ation	TW6A	1	0	0	0	0	1	0	0	1	1	2	1	3	1	1	(W6) ← (A)
Timer operation	TABPS	1	0	0	1	1	1	0	1	0	1	2	7	5	1	1	$ \begin{array}{l} (B) \leftarrow (TPS7\text{-}TPS4) \\ (A) \leftarrow (TPS3\text{-}TPS0) \end{array} $
Ë	TPSAB	1	0	0	0	1	1	0	1	0	1	2	3	5	1	1	$(RPS7-RPS4) \leftarrow (B)$ $(TPS7-TPS4) \leftarrow (B)$ $(RPS3-RPS0) \leftarrow (A)$ $(TPS3-TPS0) \leftarrow (A)$
	TAB1	1	0	0	1	1	1	0	0	0	0	2	7	0	1	1	(B) ← (T17–T14) (A) ← (T13–T10)
	Т1АВ	1	0	0	0	1	1	0	0	0	0	2	3	0	1	1	$(R1L7-R1L4) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$ $(R1L3-R1L0) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$
	Т1НАВ	1	0	1	0	0	1	0	0	1	0	2	9	2	1	1	(R1H7–R1H4) ← (B) (R1H3–R1H0) ← (A)

	<u> </u>	
Skip condition	Carry flag CY	Datailed description
_	_	Clears (0) to interrupt enable flag INTE, and disables the interrupt.
_	_	Sets (1) to interrupt enable flag INTE, and enables the interrupt.
V10 = 0: (EXF0) = 1	_	When $V10 = 0$: Clears (0) to the EXF0 flag and skips the next instruction when external 0 interrupt request flag EXF0 is "1." When the EXF0 flag is "0," executes the next instruction. When $V10 = 1$: This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control register V1)
(INT) = "L" However, I12 = 0	_	When I12 = 0: Skips the next instruction when the level of INT pin is "L." Executes the next instruction when the level of INT pin is "H."
(INT) = "H" However, I12 = 1		When I12 = 1: Skips the next instruction when the level of INT pin is "H." Executes the next instruction when the level of INT pin is "L." (I12: bit 2 of interrupt control register I1)
_	_	Transfers the contents of interrupt control register V1 to register A.
_	_	Transfers the contents of register A to interrupt control register V1.
_	_	Transfers the contents of interrupt control register V2 to register A.
_	_	Transfers the contents of register A to interrupt control register V2.
_	_	Transfers the contents of interrupt control register I1 to register A.
_	_	Transfers the contents of register A to interrupt control register I1.
_	_	Transfers the contents of register A to timer control register PA.
_	_	Transfers the contents of timer control register W1 to register A.
_	_	Transfers the contents of register A to timer control register W1.
_	_	Transfers the contents of timer control register W2 to register A.
_	_	Transfers the contents of register A to timer control register W2.
_	_	Transfers the contents of timer control register W5 to register A.
_	_	Transfers the contents of register A to timer control register W5.
_	_	Transfers the contents of timer control register W6 to register A.
_	_	Transfers the contents of register A to timer control register W6.
-	_	Transfers the high-order 4 bits of prescaler to register B. Transfers the low-order 4 bits of prescaler to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of prescaler and prescaler reload register RPS. Transfers the contents of register A to the low-order 4 bits of prescaler and prescaler reload register RPS.
-	_	Transfers the high-order 4 bits (T17–T14) of timer 1 to register B. Transfers the low-order 4 bits (T13–T10) of timer 1 to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1L. Transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1L.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 1 reload register R1H. Transfers the contents of register A to the low-order 4 bits of timer 1 reload register R1H.

Parameter						In	stru	ction	cod	e			r of s	r of s	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	Hexadecimal notation	Number of words	Number of cycles	Function
	TAB2	1	0	0	1	1	1	0	0	0	1	2 7 1	1	1	(B) ← (T27–T24) (A) ← (T23–T20)
	T2AB	1	0	0	0	1	1	0	0	0	1	2 3 1	1	1	$(R2L7-R2L4) \leftarrow (B)$ $(T27-T24) \leftarrow (B)$ $(R2L3-R2L0) \leftarrow (A)$ $(T23-T20) \leftarrow (A)$
Timer operation	Т2НАВ	1	0	1	0	0	1	0	1	0	0	2 9 4	1	1	(R2H7–R2H4) ← (B) (R2H3–R2H0) ← (A)
er ope	T1R1L	1	0	1	0	1	0	0	1	1	1	2 A 7	1	1	(T1) ← (R1L)
Ţ	T2R2L	1	0	1	0	0	1	0	1	0	1	2 9 5	1	1	(T2) ← (R2L)
	SNZT1	1	0	1	0	0	0	0	0	0	0	2 8 0	1	1	V12 = 0: (T1F) = 1 ? (T1F) ← 0 V12 = 1: SNZT1 = NOP
	SNZT2	1	0	1	0	0	0	0	0	0	1	2 8 1	1	1	V13 = 0: $(T2F) = 1$? $(T2F) \leftarrow 0$ V13 = 1: SNZT2 = NOP
	IAP0	1	0	0	1	1	0	0	0	0	0	2 6 0	1	1	(A) ← (P0)
	OP0A	1	0	0	0	1	0	0	0	0	0	2 2 0	1	1	(P0) ← (A)
	IAP1	1	0	0	1	1	0	0	0	0	1	2 6 1	1	1	(A) ← (P1)
	OP1A	1	0	0	0	1	0	0	0	0	1	2 2 1	1	1	(P1) ← (A)
	IAP2	1	0	0	1	1	0	0	0	1	0	2 6 2	1	1	(A1, A0) ← (P21, P20) (A3, A2) ← 0
	OP2A	1	0	0	0	1	0	0	0	1	0	2 2 2	1	1	(P21, P20) ← (A1, A0)
<u>_</u>	CLD	0	0	0	0	0	1	0	0	0	1	0 1 1	1	1	(D) ← 1
Input/Output operation	RD	0	0	0	0	0	1	0	1	0	0	0 1 4	1	1	$ (D(Y)) \leftarrow 0 $ $ (Y) = 0 \text{ to } 3 $
Output o	SD	0	0	0	0	0	1	0	1	0	1	0 1 5	1	1	$(D(Y)) \leftarrow 1$ (Y) = 0 to 3
)/jndi	SZD	0	0	0	0	1	0	0	1	0	0	0 2 4	2	2	(D(Y)) = 0?
		0	0	0	0	1	0	1	0	1	1	0 2 B			(Y) = 0 to 3
	TFR0A	1	0	0	0	1	0	1	0	0	0	2 2 8	1	1	(FR0) ← (A)
	TFR1A	1	0	0	0	1	0	1	0	0	1	2 2 9	1	1	(FR1) ← (A)
	TFR2A	1	0	0	0	1	0	1	0	1	0	2 2 A	1	1	(FR2) ← (A)
	TFR3A	1	0	0	0	1	0	1	0	1	1	2 2 B	1	1	(FR3) ← (A)
	TK0A	1	0	0	0	0	1	1	0	1	1	2 1 B	1	1	$(K0) \leftarrow (A)$
	TAK0	1	0	0	1	0	1	0	1	1	0	2 5 6	1	1	(A) ← (K0)

Skip condition	Carry flag CY	Datailed description
_	_	Transfers the high-order 4 bits (T27–T24) of timer 2 to register B. Transfers the low-order 4 bits (T23–T20) of timer 2 to register A.
_	_	Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload register R2L. Transfers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2L.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 2 reload register R2H. Transfers the contents of register A to the low-order 4 bits of timer 2 reload register R2H.
_	_	Transfers the contents of timer 1 reload register R1L to timer 1.
-	_	Transfers the contents of timer 2 reload register R2L to timer 2.
V12 = 0: (T1F) = 1	_	When V12 = 0 : Clears (0) to the T1F flag and skips the next instruction when timer 1 interrupt request flag T1F is "1." When the T1F flag is "0," executes the next instruction. When V12 = 1 : This instruction is equivalent to the NOP instruction. (V12: bit 2 of interrupt control register V1)
V13 = 0: (T2F) =1	_	When V13 = 0 : Clears (0) to the T2F flag and skips the next instruction when timer 2 interrupt request flag T2F is "1." When the T2F flag is "0," executes the next instruction. When V13 = 1 : This instruction is equivalent to the NOP instruction. (V13: bit 3 of interrupt control register V1)
_	-	Transfers the input of port P0 to register A.
_	_	Outputs the contents of register A to port P0.
_	_	Transfers the input of port P1 to register A.
_	_	Outputs the contents of register A to port P1.
-	_	Transfers the input of port P2 to the low-order 2 bits (A1, A0) of register A. "0" is stored to the bit 3 (A3) of register A.
_	_	Outputs the contents of the low-order 2 bits (A1, A0) of register A to port P2.
_	_	Sets (1) to port D.
_	_	Clears (0) to a bit of port D specified by register Y.
_	_	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 ?	_	Skips the next instruction when a bit of port D specified by register Y is "0." Executes the next instruction when a bit of port D specified by register Y is "1."
_	_	Transfers the contents of register A to port output structure control register FR0.
_	_	Transfers the contents of register A to port output structure control register FR1.
_	_	Transfers the contents of register A to port output structure control register FR2.
_	_	Transfers the contents of register A to port output structure control register FR3.
_	_	Transfers the contents of register A to key-on wakeup control register K0.
_	_	Transfers the contents of key-on wakeup control register K0 to register A.

			-		140	Instruction code					ode (Conti				of of	eu)	I
Parameter						In	stru	ction	cod	е					er of ds	er of les	Function
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Дз	D2	D1	D ₀	Hexa no	ade otati		Number words	Number of cycles	Function
	TK1A	1	0	0	0	0	1	0	1	0	0	2	1	4	1	1	(K1) ← (A)
	TAK1	1	0	0	1	0	1	1	0	0	1	2	5	9	1	1	(A) ← (K1)
	TK2A	1	0	0	0	0	1	0	1	0	1	2	1	5	1	1	(K2) ← (A)
_	TAK2	1	0	0	1	0	1	1	0	1	0	2	5	Α	1	1	(A) ← (K2)
ratio	TPU0A	1	0	0	0	1	0	1	1	0	1	2	2	D	1	1	(PU0) ← (A)
Input/Output operation	TAPU0	1	0	0	1	0	1	0	1	1	1	2	5	7	1	1	(A) ← (PU0)
Outpu	TPU1A	1	0	0	0	1	0	1	1	1	0	2	2	E	1	1	(PU1) ← (A)
put/C	TAPU1	1	0	0	1	0	1	1	1	1	0	2	5	E	1	1	(A) ← (PU1)
=	TPU2A	1	0	0	0	1	0	1	1	1	1	2	2	F	1	1	(PU2) ← (A)
	TAPU2	1	0	0	1	0	1	1	1	1	1	2	5	F	1	1	(A) ← (PU2)
	TL1A	1	0	0	0	0	0	1	0	1	0	2	0	Α	1	1	(L1) ← (A)
	TAL1	1	0	0	1	0	0	1	0	1	0	2	4	Α	1	1	(A) ← (L1)
	TABSI	1	0	0	1	1	1	1	0	0	0	2	7	8	1	1	$(B) \leftarrow (SI7-SI4) \ (A) \leftarrow (SI3-SI0)$
ation	TSIAB	1	0	0	0	1	1	1	0	0	0	2	3	8	1	1	$(SI7-SI4) \leftarrow (B) (SI3-SI0) \leftarrow (A)$
ace oper	SST	1	0	1	0	0	1	1	1	1	0	2	9	E	1	1	(SIOF) ← 0 Serial interface transmit/receive starting
Serial interface operation	SNZSI	1	0	1	0	0	0	1	0	0	0	2	8	8	1		V23=0: (SIOF)=1? (SIOF) ← 0 V23 = 1: SNZSI = NOP
l o	TAJ1	1	0	0	1	0	0	0	0	1	0	2	4	2	1	1	$(A) \leftarrow (J1)$
	TJ1A	1	0	0	0	0	0	0	0	1	0	2	0	2	1	1	(J1) ← (A)
uo	CRCK	1	0	1	0	0	1	1	0	1	1	2	9	В	1	1	RC oscillator selected
Derati	TRGA	1	0	0	0	0	0	1	0	0	1	2	0	9	1	1	(RG ₀) ← (A ₀)
Clock operation	TAMR	1	0	0	1	0	1	0	0	1	0	2	5	2	1	1	$(A) \leftarrow (MR)$
⁸	TMRA	1	0	0	0	0	1	0	1	1	0	2	1	6	1	1	$(MR) \leftarrow (A)$

	_	
Skip condition	Carry flag CY	Datailed description
_	_	Transfers the contents of register A to key-on wakeup control register K1.
_	_	Transfers the contents of key-on wakeup control register K1 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K2.
-	_	Transfers the contents of key-on wakeup control register K2 to register A.
-	_	Transfers the contents of register A to pull-up control register PU0.
_	_	Transfers the contents of pull-up control register PU0 to register A.
_	-	Transfers the contents of register A to pull-up control register PU1.
_	-	Transfers the contents of pull-up control register PU1 to register A.
_	-	Transfers the contents of register A to pull-up control register PU2.
_	-	Transfers the contents of pull-up control register PU2 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register L1.
_	_	Transfers the contents of key-on wakeup control register L1 to register A.
-	_	Transfers the high-order 4 bits of serial interface register SI to register B, and transfers the low-order 4 bits of serial interface register SI to register A.
_	_	Transfers the contents of register B to the high-order 4 bits of serial interface register SI, and transfers the contents of register A to the low-order 4 bits of serial interface register SI.
_	_	Clears (0) to SIOF flag and starts serial interface transmit/receive.
V23 = 0: (SIOF) =1	_	Clears (0) to SIOF flag and skips the next instruction when the contents of bit 3 (V23) of interrupt control register V2 is "0" and contents of SIOF flag is "1." When V23 = 1: This instruction is equivalent to the NOP instruction.
_	_	Transfers the contents of serial interface control register J1 to register A.
_	_	Transfers the contents of register A to serial interface control register J1.
_	_	Selects the RC oscillation circuit for main clock f(XIN).
_	_	Transfers the least significant bit (A ₀) of register A to clock control regiser RG.
_	_	Transfers the contents of clock control regiser MR to register A.
_	_	Transfers the contents of register A to clock control register MR.

Parameter						Ir	nstru	ction	cod	le					r of s	r of s	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Дз	D2	D1	D ₀			ecimal	Number of words	Number of cycles	Function
	TABAD	1	0	0	1	1	1	1	0	0	1	2	7	9	1	1	Q13 = 0: (B) \leftarrow (AD9-AD6) (A) \leftarrow (AD5-AD2) Q13 = 1: (B) \leftarrow (AD7-AD4) (A) \leftarrow (AD3-AD0)
tion	TALA	1	0	0	1	0	0	1	0	0	1	2	4	9	1	1	(A3, A2) ← (AD1, AD0) (A1, A0) ← 0
A/D conversion operation	TADAB	1	0	0	0	1	1	1	0	0	1	2	3	9	1	1	Q13 = 0: $(AD7-AD4) \leftarrow (B)$ $(AD3-AD0) \leftarrow (A)$ Q13 = 1: TADAB = NOP
Conve	TAQ1	1	0	0	1	0	0	0	1	0	0	2	4	4	1	1	(A) ← (Q1)
A/D	TQ1A	1	0	0	0	0	0	0	1	0	0	2	0	4	1	1	(Q1) ← (A)
	ADST	1	0	1	0	0	1	1	1	1	1	2	9	F	1	1	(ADF) ← 0 Q13 = 0: A/D conversion starting Q13 = 1: Comparator operation starting
	SNZAD	1	0	1	0	0	0	0	1	1	1	2	8	7	1	1	V22 = 0: (ADF) = 1 ? (ADF) ← 0 V22 = 1: SNZAD = NOP
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	(PC) ← (PC) + 1
	POF	0	0	0	0	0	0	0	0	1	0	0	0	2	1	1	RAM back-up
	EPOF	0	0	0	1	0	1	1	0	1	1	0	5	В	1	1	POF instruction valid
	SNZP	0	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?
tion	DWDT	1	0	1	0	0	1	1	1	0	0	2	9	С	1	1	Stop of watchdog timer function enabled
Other operation	WRST	1	0	1	0	1	0	0	0	0	0	2	Α	0	1	1	(WDF1) = 1 ?, (WDF1) ← 0
Ď	SRST	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	System reset
	RUPT	0	0	0	1	0	1	1	0	0	0	0	5	8	1	1	(UPTF) ← 0
	SUPT	0	0	0	1	0	1	1	0	0	1	0	5	9	1	1	(UPTF) ← 1
	SVDE**	1	0	1	0	0	1	0	0	1	1			3	1	1	Voltage drop detection circuit valid at RAM back-up

Note: The SVDE instruction can be used only in the H version.

Skip condition	Carry flag CY	Datailed description
-	_	In the A/D conversion mode (Q13 = 0), transfers the high-order 4 bits (AD9–AD6) of register AD to register B, and the middle-order 4 bits (AD5–AD2) of register AD to register A. In the comparator mode (Q13 = 1), transfers the high-order 4 bits (AD7–AD4) of comparator register to register B, and the low-order 4 bits (AD3–AD0) of comparator register to register A. (Q13: bit 3 of A/D control register Q1)
_	_	Transfers the low-order 2 bits (AD1, AD0) of register AD to the high-order 2 bits (A3, A2) of register A. "0" is stored to the least significant bit (A0) of register A.
_	_	In the comparator mode (Q13 = 1), transfers the contents of register B to the high-order 4 bits (AD7–AD4) of comparator register, and the contents of register A to the low-order 4 bits (AD3–AD0) of comparator register. In the A/D conversion mode (Q13 = 0), this instruction is equivalent to the NOP instruction. (Q13 = bit 3 of A/D control register Q1)
-	_	Transfers the contents of A/D control register Q1 to register A.
-	_	Transfers the contents of register A to A/D control register Q1.
-	_	Clears (0) to A/D conversion completion flag ADF, and the A/D conversion at the A/D conversion mode (Q13 = 0) or the comparator operation at the comparator mode (Q13 = 1) is started. (Q13 = bit 3 of A/D control register Q1)
V22 = 0: (ADF) = 1	_	When V22 = 0 : Skips the next instruction when A/D conversion completion flag ADF is "1." After skipping, clears (0) to the ADF flag. When the ADF flag is "0," executes the next instruction. When V22 = 1 : This instruction is equivalent to the NOP instruction. (V22: bit 2 of interrupt control register V2)
-	_	No operation; Adds 1 to program counter value, and others remain unchanged.
-	_	Puts the system in RAM back-up state by executing the POF instruction after executing the EPOF instruction. Operations of all functions are stopped.
-	_	Makes the immediate after POF instruction valid by executing the EPOF instruction.
(P) = 1	_	Skips the next instruction when the P flag is "1". After skipping, the P flag remains unchanged. Executes the next instruction when the P flag is "0."
-	_	Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction.
(WDF1) = 1	_	Clears (0) to the WDF1 flag and skips the next instruction when watchdog timer flag WDF1 is "1." When the WDF1 flag is "0," executes the next instruction. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction.
-	_	System reset occurs.
_	_	Clears (0) to the high-order bit reference enable flag UPTF.
_	_	Sets (1) to the high-order bit reference enable flag UPTF.
_	_	Validates the voltage drop detection circuit at RAM back-up (only for the H version).

INSTRUCTION CODE TABLE

1100		00.	<u> </u>	'DLL														
D9-D4	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111		
Hex. notation	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–1F
0	NOP	BLA	SZB 0	BMLA	_	TASP	A 0	LA 0	TABP 0	TABP 16	-	_	BML	BML	BL	BL	ВМ	В
1	SRST	CLD	SZB 1	_	_	TAD	A 1	LA 1	TABP 1	TABP 17	_	_	BML	BML	BL	BL	ВМ	В
2	POF	1	SZB 2	_	_	TAX	A 2	LA 2	TABP 2	TABP 18	_	_	BML	BML	BL	BL	ВМ	В
3	SNZP	INY	SZB 3	_	_	TAZ	A 3	LA 3	TABP 3	TABP 19	-	_	BML	BML	BL	BL	вм	В
4	DI	RD	SZD	_	RT	TAV1	A 4	LA 4	TABP 4	TABP 20		_	BML	BML	BL	BL	ВМ	В
5	EI	SD	SEAn	_	RTS	TAV2	A 5	LA 5	TABP 5	TABP 21	_	_	BML	BML	BL	BL	ВМ	В
6	RC	-	SEAM	_	RTI	_	A 6	LA 6	TABP 6	TABP 22	-	_	BML	BML	BL	BL	вм	В
7	sc	DEY	_	_	_	_	A 7	LA 7	TABP 7	TABP 23		_	BML	BML	BL	BL	ВМ	В
8	-	AND	_	SNZ0	LZ 0	RUPT	A 8	LA 8	TABP 8	TABP 24	-	_	BML	BML	BL	BL	вм	В
9	-	OR	TDA	_	LZ 1	SUPT	A 9	LA 9	TABP 9	TABP 25	-	_	BML	BML	BL	BL	ВМ	В
Α	AM	TEAB	TABE	SNZI0	LZ 2	_	A 10	LA 10	TABP 10	TABP 26	_	_	BML	BML	BL	BL	ВМ	В
В	AMC	-	_	_	LZ 3	EPOF	A 11	LA 11	TABP 11	TABP 27	_	_	BML	BML	BL	BL	ВМ	В
С	TYA	СМА	_	_	RB 0	SB 0	A 12	LA 12	TABP 12	TABP 28		_	BML	BML	BL	BL	ВМ	В
D	-	RAR	_	_	RB 1	SB 1	A 13	LA 13	TABP 13	TABP 29	-	_	BML	BML	BL	BL	ВМ	В
Е	ТВА	TAB	_	TV2A	RB 2	SB 2	A 14	LA 14	TABP 14	TABP 30	_	_	BML	BML	BL	BL	вм	В
F	-	TAY	szc	TV1A	RB 3	SB 3	A 15	LA 15	TABP 15	TABP 31	_	_	BML	BML	BL	BL	ВМ	В
	D9-D4 Hex. notation 0 1 2 3 4 5 6 7 8 9 A B C D	D9—D4 000000 Hex.	D9-D4 000000 000001 Hex. notation 00 01 0 NOP BLA 1 SRST CLD 2 POF - 3 SNZP INY 4 DI RD 5 EI SD 6 RC - 7 SC DEY 8 - AND 9 - OR A AM TEAB B AMC - C TYA CMA D - RAR E TBA TAB	D9-D4 000000 000001 00001 Hex. notation 00 01 02 0 NOP BLA SZB 0 1 SRST CLD SZB 1 2 POF - SZB 2 3 SNZP INY SZB 3 4 DI RD SZD 5 EI SD SEAN 6 RC - SEAM 7 SC DEY - 8 - AND - 9 - OR TDA A AM TEAB TABE B AMC - - C TYA CMA - D - RAR - E TBA TAB -	Hex. OO O1 O2 O3 O NOP BLA SZB BMLA 1	Dep	Dep-D4 000000 000001 000011 000100 000101 000100 000101 000100 000101 000100 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 000101 0	Day	D9-D4 000000 00001 000011 000101 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000111 000	Da-D4 000000 000001 000011 000100 000110 000111 001000 000111 001010 000111 001010 000111 001010 000111 001010 000111 001010 000111 001010 000111 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 00101 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 00101 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 0010	Dep-D4 000000 00001 000010 000101 000101 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 001010 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 001000 001001 000111 001000 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 001001 00	Dep-D4 000000 000010 000011 000101 000111 0000111 001000 001001 001010 001010 000101 000111 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010 001010	Dep-D4 000000 00001 000010 000101 000101 000111 001010 001011 001010 001011 001010 001011 001010 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 001011 00	De-D-4 000000 000001 000011 000110 000111 001100 001010 001011 001110 001111 001100 001011 001101 001111 001100 001011 001011 001111 001100 001011 001011 001111 001100 001011 001011 001111 001100 001011 001011 001011 001011 001011 001011 001011 001011 001011 001010 001011 001011 001010 001011 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 001011 001010 0010110 0010110 0010110 0010110 0010110 00101010 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 00101010 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 0010110 001011	Dep-D4 000000 000010 000011 000110 000111 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 0	Dep-Day 000000 000001 000010 000110 000111 001100 001011 001101 001111 001101 001111 001101 001111 001101 001111 001101 001111 001101 001111 001101 001111 001101 001111 001101 001111 001101 001111 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101 001101	NOP BLA SZB SMLA - TASP A LA TABP TABP - - BML BML BL BL	No

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The	secon	d word
BL	10	0aaa	aaaa
BML	10	0aaa	aaaa
BLA	10	0p00	pppp
BMLA	10	0p00	pppp
SEA	00	0111	nnnn
SZD	00	0010	1011

INSTRUCTION CODE TABLE (continued)

						1		,										
	09–D4	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	110000 111111
D3-D0	Hex. notation	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30–3F
0000	0	_	-	OP0A	T1AB	-	TAW6	IAP0	TAB1	SNZT1	-	WRST	TMA 0	TAM 0	XAM 0	XAMI 0	XAMD 0	LXY
0001	1	_	-	OP1A	T2AB	-	_	IAP1	TAB2	SNZT2	_	ı	TMA 1	TAM 1	XAM 1	XAMI 1	XAMD 1	LXY
0010	2	TJ1A	TW5A	OP2A	_	TAJ1	TAMR	IAP2	_	_	T1HAB	ı	TMA 2	TAM 2	XAM 2	XAMI 2	XAMD 2	LXY
0011	3	_	TW6A		_		TAI1	_	_	-	SVDE*	ı	TMA 3	TAM 3	XAM 3	XAMI 3	XAMD 3	LXY
0100	4	TQ1A	TK1A	_	_	TAQ1	_	-	_	-	T2HAB	ı	TMA 4	TAM 4	XAM 4	XAMI 4	XAMD 4	LXY
0101	5	1	TK2A	-	TPSAB	-	_	ı	TABPS	-	T2R2L	ı	TMA 5	TAM 5	XAM 5	XAMI 5	XAMD 5	LXY
0110	6	-	TMRA	_	_	-	TAK0	-	_	_	_	1	TMA 6	TAM 6	XAM 6	XAMI 6	XAMD 6	LXY
0111	7	_	TI1A		_	_	TAPU0	_	_	SNZAD	-	T1R1L	TMA 7	TAM 7	XAM 7	XAMI 7	XAMD 7	LXY
1000	8	_	-	TFR0A	TSIAB		_	-	TABSI	SNZSI	-	ļ	TMA 8	TAM 8	XAM 8	XAMI 8	XAMD 8	LXY
1001	9	TRGA	ı	TFR1A	TADAB	TALA	TAK1	İ	TABAD	_	-	ı	TMA 9	TAM 9	XAM 9	XAMI 9	XAMD 9	LXY
1010	Α	TL1A	-	TFR2A	_	TAL1	TAK2	-	_	-	-	TPAA	TMA 10	TAM 10	XAM 10	XAMI 10	XAMD 10	LXY
1011	В	ı	TK0A	TFR3A	_	TAW1	-	İ	_	_	CRCK	J	TMA 11	TAM 11	XAM 11	XAMI 11	XAMD 11	LXY
1100	С	_	_	_	_	TAW2	_	_	_	_	DWDT	-	TMA 12	TAM 12	XAM 12	XAMI 12	XAMD 12	LXY
1101	D	ı	ı	TPU0A	_	_			_	_	_	_	TMA 13	TAM 13	XAM 13	XAMI 13	XAMD 13	LXY
1110	Е	TW1A	ı	TPU1A	_	_	TAPU1	-	_	-	SST	ı	TMA 14	TAM 14	XAM 14	XAMI 14	XAMD 14	LXY
1111	F	TW2A	ı	TPU2A	-	TAW5	TAPU2	_	_	_	ADST	ı	TMA 15	TAM 15	XAM 15	XAMI 15	XAMD 15	LXY

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "—."

The codes for the second word of a two-word instruction are described below.

	The	The second word						
BL	10	0aaa	aaaa					
BML	10	0aaa	aaaa					
BLA	10	0p00	pppp					
BMLA	10	0p00	pppp					
SEA	00	0111	nnnn					
SZD	00	0010	1011					

• * can be used only in the H version.

Electrical characteristics

Absolute maximum ratings

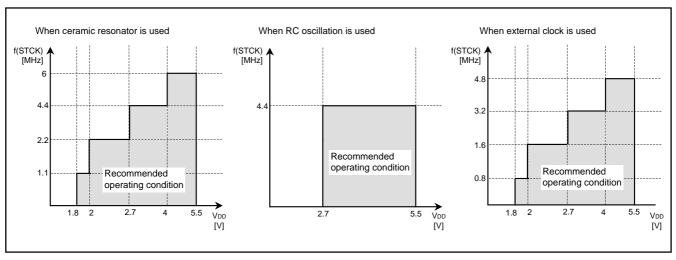
Symbol	Parameter	Conditions	Ratings	Unit
VDD	Supply voltage	_	-0.3 to 6.5	V
Vı	Input voltage P0, P1, P2, D0-D3,	-	-0.3 to VDD+0.3	V
	RESET, XIN			
Vı	Input voltage INT, CNTR0, CNTR1, SIN, SCK	-	-0.3 to VDD+0.3	V
Vı	Input voltage AIN0, AIN1, AIN4, AIN5	_	-0.3 to VDD+0.3	V
Vo	Output voltage P0, P1, P2, D0-D3,	Output transistors in cut-off state	-0.3 to VDD+0.3	V
	RESET			
Vo	Output voltage CNTR0, CNTR1, Sout, Scк	Output transistors in cut-off state	-0.3 to VDD+0.3	V
Vo	Output voltage XouT	-	-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range	_	-20 to 85	°C
Tstg	Storage temperature range	_	-40 to 125	°C

Recommended operating conditions 1

(Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Conditions			Limits		Unit
Syllibol		Conditions	Min.	Тур.	Max.		
Vdd	Supply voltage	f(STCK) ≤ 6 MHz		4		5.5	V
	(with a ceramic resonator)	f(STCK) ≤ 4.4 MHz	2.7		5.5		
		f(STCK) ≤ 2.2 MHz		2.0		5.5	
		f(STCK) ≤ 1.1 MHz		1.8		5.5	
VDD	Supply voltage (with RC oscillation)	f(STCK) ≤ 4.4 MHz		2.7		5.5	V
VDD	Supply voltage			1.8		5.5	V
	(with an on-chip oscillator)						
VRAM	RAM back-up voltage	(at RAM back-up)		1.6		5.5	V
Vss	Supply voltage				0		V
VIH	"H" level input voltage	P0, P1, P2, D0-D3		0.8VDD		VDD	V
		XIN		0.7VDD		VDD	
		RESET		0.85VDD		VDD	
		INT, CNTR0, CNTR1, SIN, SCH	(0.85VDD		VDD	1
VIL	"L" level input voltage	P0, P1, P2, D0-D3		0		0.2VDD	V
		XIN		0		0.3VDD	
		RESET		0		0.3VDD	
		INT, CNTR0, CNTR1, Sin, Sch	0		0.15Vpp		
loн(peak)	"H" level peak output current	P0, P1, P2, D0–D3	VDD = 5.0 V			-20	mA
, (()	·	CNTR0, CNTR1, Sout, Sck	VDD = 3.0 V			-10	1
loн(avg)	"H" level average output current	P0, P1, P2, D0–D3	VDD = 5.0 V			-10	mA
ν σ,	(Note)	CNTR0, CNTR1, SOUT, SCK	VDD = 3.0 V			-5	1
loL(peak)	"L" level peak output current	P0, P1	VDD = 5.0 V			24	mA
`` ,		CNTR0, CNTR1, SOUT, SCK	VDD = 3.0 V			12	1
		P2, RESET	VDD = 5.0 V			10	1
			VDD = 3.0 V			4.0	1
		Do, D1	VDD = 5.0 V			40	1
			VDD = 3.0 V			30	
		D2, D3	VDD = 5.0 V			24	1
			VDD = 3.0 V			12	1
loL(avg)	"L" level average output current	P0, P1	VDD = 5.0 V			12	mA
		CNTR0, CNTR1, SOUT, SCK	VDD = 3.0 V			6.0	
		P2, RESET	VDD = 5.0 V			5.0	1
			VDD = 3.0 V			2.0	
		Do, D1	VDD = 5.0 V			30	
			VDD = 3.0 V			15	
		D2, D3	VDD = 5.0 V			15	
			VDD = 3.0 V			7.0	
Σloн(avg)	"H" level total average current	P0, P1, CNTR0, CNTR1, Sout	, Sck			-40	mA
, ,,	_	P2, D0-D3				-40	
Σlo∟(avg)	"L" level total average current	P0, P1, CNTR0, CNTR1, Sout	, Sck			60	mA
		P2, D0-D3, RESET				60	

Notes 1: The average output current (IOH, IOL) is the average value during 100 ms.


Recommended operating conditions 2

(Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Condition	one		Limits		Unit
Cymbol	1 didiliciei	Condition	,	Min.	Тур.	Max.	0111
f(XIN)	Oscillation frequency	Through mode	VDD = 4.0 V to 5.5 V			6	MH:
	(with a ceramic resonator)		VDD = 2.7 V to 5.5 V			4.4	
			VDD = 2.0 V to 5.5 V			2.2	1
			VDD = 1.8 V to 5.5 V			1.1	1
		Internal frequency divided	VDD = 2.7 V to 5.5 V			6	1
		by 2	VDD = 2.0 V to 5.5 V			4.4	1
			VDD = 1.8 V to 5.5 V			2.2	1
		Internal frequency divided	VDD = 2.0 V to 5.5 V			6	1
		by 4, 8	VDD = 1.8 V to 5.5 V			4.4	1
f(XIN)	Oscillation frequency (with RC oscillation) (Note 1)	VDD = 2.7 V to 5.5 V				4.4	MHz
f(XIN)	Oscillation frequency Through mode VDD =		VDD = 4.0 V to 5.5 V			4.8	MHz
	(with a ceramic oscillation selected,				3.2	1	
	external clock input) VDD = 2.0 V		VDD = 2.0 V to 5.5 V			1.6	1
			VDD = 1.8 V to 5.5 V			0.8	1
		Internal frequency divided	VDD = 2.7 V to 5.5 V			4.8	1
		by 2	VDD = 2.0 V to 5.5 V			3.2	1
			VDD = 1.8 V to 5.5 V			1.6	1
		Internal frequency divided	VDD = 2.0 V to 5.5 V			4.8	1
		by 4, 8	VDD = 1.8 V to 5.5 V			3.2	1
f(CNTR)	Timer external input frequency	CNTR0, CNTR1				f(STCK)/6	Hz
tw(CNTR)	Timer external input period ("H" and "L" pulse width)	CNTR0, CNTR1		3/f(STCK)			s
f(Sck)	Serial interface external input period	SCK				f(STCK)/6	Hz
tw(Sck)	Serial interface external input period	Sck		3/f(STCK)		,	s
	("H" and "L" pulse width)						
TPON	Power-on reset circuit valid supply voltage rising time (Note 2)	$VDD = 0 \rightarrow 1.8 \text{ V}$				100	μs

Notes 1: The frequency at RC oscillation is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

2: If the rising time exceeds the maximum rating value, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

System clock (STCK) operating condition map

Electrical characteristics 1 (Ta = -20 °C to 85 °C, V_{DD} = 1.8 to 5.5 V, unless otherwise noted)

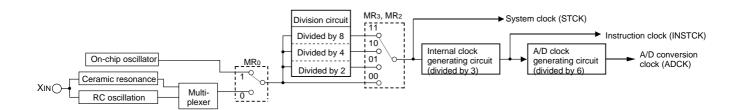
Symbol	Parameter	Test conditions			Limits		Unit
Syllibol	raiailletei			Min.	Тур.	Max.	Ullit
Vон	"H" level output voltage	VDD = 5.0 V	Iон = −10 mA	3.0			V
	P0, P1, P2, D0–D3		Iон = −3.0 mA	4.1			
	CNTR0, CNTR1, SOUT, SCK	VDD = 3.0 V	Iон = −5.0 mA	2.1			
			IOH = −1.0 mA	2.4			
Vol	"L" level output voltage	VDD = 5.0 V	IOL = 12 mA			2.0	V
	P0, P1		IOL = 4.0 mA			0.9	
	CNTR0, CNTR1, SOUT, SCK	VDD = 3.0 V	IOL = 6.0 mA			0.9]
			IOL = 2.0 mA			0.6	
VoL	"L" level output voltage	VDD = 5.0 V	IOL = 5.0 mA			2.0	V
	P2, RESET		IOL = 1.0 mA			0.6	
		VDD = 3.0 V	IOL = 2.0 mA			0.9]
Vol	"L" level output voltage	VDD = 5.0 V	IOL = 30 mA			2.0	V
	Do, D1		IOL = 10 mA			0.9	
		VDD = 3.0 V	IOL = 15 mA			2.0]
			IOL = 5.0 mA			0.9	1
VoL	"L" level output voltage	VDD = 5.0 V	IOL = 15 mA			2.0	V
	D2, D3		IOL = 5.0 mA			0.9	
		VDD = 3.0 V	IOL = 9.0 mA			1.4	1
			IOL = 3.0 mA			0.9	1
Iн	"H" level input current	VI = VDD				2.0	μΑ
	P0, P1, P2, D0–D3						
	RESET, INT						
	CNTR0, CNTR1, SIN, SCK						
lıL	"L" level input current	VI = 0 V P0, P1, P2, D2,	D3 No pull-up			-2.0	μΑ
	P0, P1, P2, D0–D3						
	RESET, INT						
	CNTR0, CNTR1, SIN, SCK						
Rpu	Pull-up resistor value	VI = 0 V	VDD = 5.0 V	30	60	125	kΩ
	P0, P1, P2, D2, D3, RESET		VDD = 3.0 V	50	120	250	1
VT+ - VT-	Hysteresis RESET	VDD = 5.0 V	•		1.0		V
		VDD = 3.0 V			0.4		1
VT+ - VT-	Hysteresis INT, CNTR0, CNTR1	VDD = 5.0 V VDD = 3.0 V			0.2		V
	SIN, SCK				0.2		1
f(RING)	On-chip oscillator clock frequency	VDD = 5.0 V		200	500	700	kHz
	, ,	VDD = 3.0 V		100	250	400	1
		VDD = 1.8 V		30	120	200	1
Δ f(XIN)	Oscillation frequency error (Note 1)	VDD = 5.0 V ± 10 %, Ta =	= center 25 °C			±17	%
	(at RC oscillation, error value of external R, C not included)	$VDD = 3.0 V \pm 10 \%$, Ta =	= center 25 °C			±17	

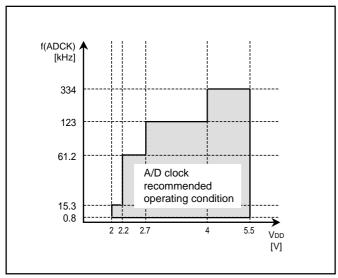
Notes 1: When the RC oscillation is used, use a 33 pF capacitor externally.

Electrical characteristics 2 (Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Symbol		Parameter	Test con	ditions		Limits		Unit
Syllibol		raiametei	rest con	Min. Typ. I		Max.	ax.	
IDD S	Supply current	at active mode	VDD = 5.0 V	f(STCK) = f(XIN)/8		1.2	2.4	mA
		(with a ceramic resonator)	f(XIN) = 6.0 MHz	f(STCK) = f(XIN)/4		1.3	2.6	
		(Notes 1, 2)	f(RING) = stop	f(STCK) = f(XIN)/2		1.6	3.2	
				f(STCK) = f(XIN)		2.2	4.4	
			VDD = 5.0 V	f(STCK) = f(XIN)/8		0.9	1.8	mA
			f(XIN) = 4.0 MHz	f(STCK) = f(XIN)/4		1	2	
			f(RING) = stop	f(STCK) = f(XIN)/2		1.2	2.4	
				f(STCK) = f(XIN)		1.6	3.2	
			VDD = 3.0 V	f(STCK) = f(XIN)/8		0.2	0.4	mA
			f(XIN) = 2.0 MHz	f(STCK) = f(XIN)/4		0.25	0.5	
			f(RING) = stop	f(STCK) = f(XIN)/2		0.3	0.6	
				f(STCK) = f(XIN)		0.4	0.8	
		at active mode	VDD = 5.0 V	f(STCK) = f(RING)/8		50	100	μΑ
		(with an on-chip oscillator)	f(XIN) = stop	f(STCK) = f(RING)/4		60	120	
		(Notes 1, 2)	f(RING) = operating	f(STCK) = f(RING)/2		80	160	
				f(STCK) = f(RING)		120	240	
			VDD = 3.0 V	f(STCK) = f(RING)/8		10	20	μΑ
			f(XIN) = stop	f(STCK) = f(RING)/4		13	26	
			f(RING) = opertaing	f(STCK) = f(RING)/2		19	38	
				f(STCK) = f(RING)		31	62	
		at RAM back-up mode	Ta = 25 °C			0.1	3	μΑ
		(POF instruction execution)	VDD = 5.0 V				10	
		(Note 3)	VDD = 3.0 V				6	

Notes 1: When the A/D converter is used, the A/D operation current (IADD) is included.


^{2:} In the M34508G4H, the voltage drop detection circuit operation current (IRST) is added.
3: In the M34508G4H, when the SVDE instruction is executed, the voltage drop detection circuit operation current (IRST) is added.


A/D converter recommended operating conditions

(Comparator mode included, Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter	Conditions		Unit		
Symbol	Faiametei	Conditions	Min.	Тур.	Max.	Offic
VDD	Supply voltage	Ta = 0 °C to 50 °C	2.0		5.5	V
		Ta = −20 °C to 85 °C	2.7		5.5	
VIA	Analog input voltage		0		VDD	V
f(ADCK)	A/D clock frequency (Note)	VDD = 4.0 V to 5.5 V	0.8		334	kHz
		VDD = 2.7 V to 5.5 V	0.8		123	
		VDD = 2.2 V to 5.5 V	0.8		61.2	
		VDD = 2.0 V to 5.5 V	0.8		15.3	

Note: Definition of A/D conversion clock (ADCK)

A/D clock (ADCK) operating condition map

A/D converter characteristcs

(Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits		Unit	
Symbol	Falameter	Test conditions	Min.	Тур.	Max.	Offic	
-	Resolution				10	bits	
-	Linearity error	Ta = 0 °C to 50 °C, 2.2 V \leq VDD < 2.7 V			±4.0	LSB	
		Ta = -20 °C to 85 °C, 2.7 V ≤ VDD ≤ 5.5 V			±2.0]	
-	Differential non-linearity error $ Ta = 0 \text{ °C to } 50 \text{ °C}, 2.2 \text{ V} \leq \text{VDD} < 2.7 \text{ V} $ $ Ta = -20 \text{ °C to } 85 \text{ °C}, 2.7 \text{ V} \leq \text{VDD} \leq 5.6 $				±0.9	LSB	
		Ta = -20 °C to 85 °C, 2.7 V \leq VDD \leq 5.5 V			±0.9	1	
Vот	Zero transition voltage	VDD = 2.56 V	0	7.5	15	mV	
		VDD = 3.075 V	0	7.5	15		
		VDD = 5.12 V	0	10	20]	
VFST	Full-scale transition voltage	VDD = 2.56 V	2552.5	2560	2567.5	mV	
		VDD = 3.075 V	3064.5	3072	3079.5		
		VDD = 5.12 V	5100	5110	5120	<u> </u>	
_	Absolute accuracy	Ta = 0 °C to 50 °C, 2.0 V \leq VDD < 2.2 V			±8.0	LSB	
	(Quantization error excluded)						
IAdd	A/D operating current (Note 1)	VDD = 5.0 V		300	900	μΑ	
		VDD = 3.0 V		100	300		
TCONV	A/D conversion time	f(ADCK) = 334 kHz			31	μs	
		f(ADCK) = 123 kHz			85]	
		f(ADCK) = 61.2 kHz			169]	
		f(ADCK) = 15.3 kHz			676	<u> </u>	
_	Comparator resolution				8	bits	
_	Comparator error (Note 2)	VDD = 2.56 V			± 15	mV	
		VDD = 3.072 V			± 15		
		VDD = 5.12 V			± 20		
_	Comparator comparison time	f(ADCK) = 334 kHz			4	μs	
		f(ADCK) = 123 kHz			11		
		f(ADCK) = 61.2 kHz			22		
		f(ADCK) = 15.3 kHz			88		

Notes 1: When the A/D converter is used, the IADD is included to IDD.

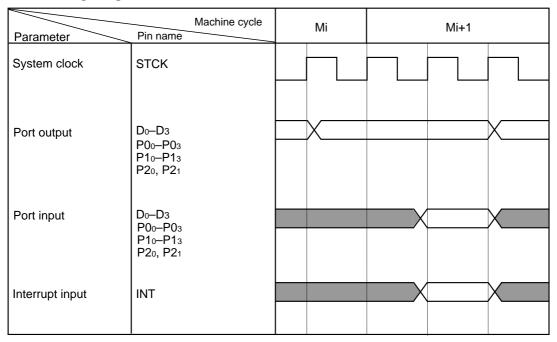
Logic value of comparison voltage Vref

$$V_{ref} = \frac{V_{DD}}{256} \times n$$

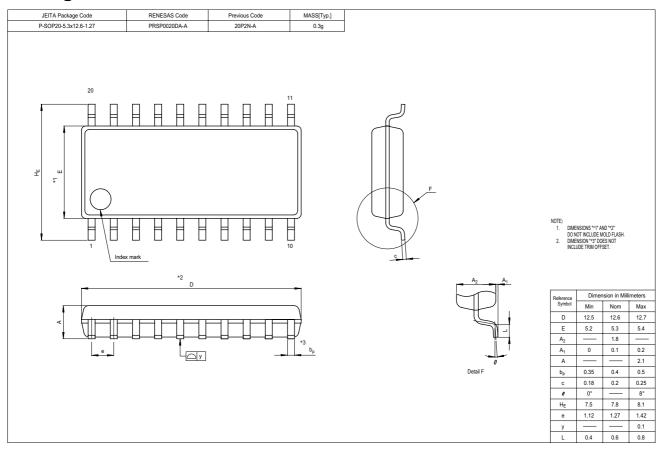
n = Value of register AD (n = 0 to 255)

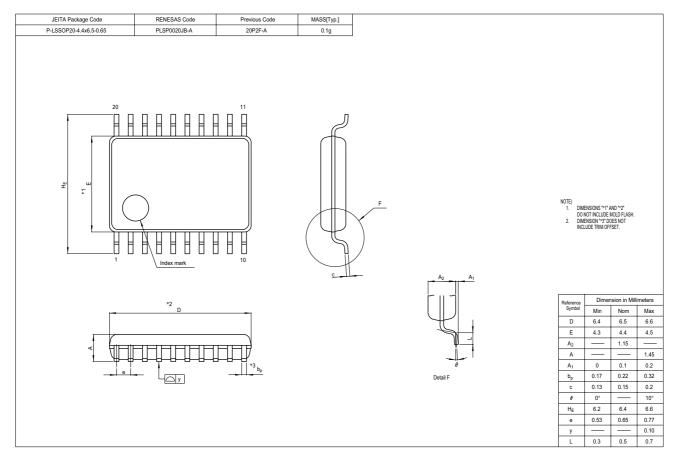
^{2:} As for the error from the logic value in the comparator mode, when the contents of the comparator register is n, the logic value of the comparison voltage V_{ref} which is generated by the built-in DA converter can be obtained by the following formula.

VOLTAGE DROP DETECTION CIRCUIT CHARACTERISTICS


(Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Doromotor	Test conditions		Limits		Unit
	Parameter	Test conditions	Min.	Тур.	Max.	- Uniii
Vrst-	Detection voltage	Ta = 25 °C		2.6		V
	(reset occurs) (Note 2)	-20 °C ≤ Ta < 0 °C	2.5		3.1	
		0 °C ≤ Ta < 50 °C	2.2		3	
		50 °C ≤ Ta ≤ 85 °C	2		2.7	
VRST+	Detection voltage	Ta = 25 °C		2.7		V
	(reset release) (Note 3)	-20 °C ≤ Ta < 0 °C	2.6		3.2	
		0 °C ≤ Ta < 50 °C	2.3		3.1	
		50 °C ≤ Ta ≤ 85 °C	2.1		2.8	
VRST+-	Detection voltage hysteresis			0.1		V
VRST ⁻						
IRST	Operation current (Note 4)	VDD = 5 V		50	100	μΑ
		VDD = 3 V		30	60	
TRST	Detection time (Note 5)	$VDD \rightarrow (VRST^ 0.1 V)$		0.2	1.2	ms


Notes 1: The voltage drop detection circuit is equipped with only the M34508G4H.


- 2: The detection voltage (VRST) is defined as the voltage when reset occurs when the supply voltage (VDD) is falling.
- 3: The detection voltage (VRST+) is defined as the voltage when reset is released when the supply voltage (VDD) is rising from reset occurs.
- 4: In the M34508G4H, IRST is added to IDD (supply current).
- 5: The detection time (TRST) is defined as the time until reset occurs when the supply voltage (VDD) is falling to [VRST- 0.1 V].

Basic timing diagram

Package outline

REVISION HISTORY

4508 Group Data Sheet

Rev.	Date		Description
		Page	Summary
1.00	Mar. 25, 2005	ı	First edition issued
1.01	Aug. 12, 2005	1	Information about the PLSP0020JB-A package products.
			"PLSP0020JB-A (20P2F-A)" added to PIN CONFIGURATION.
		17	ROM Code Protect Address added.
		52	Table 20: Some description about Port P1 added.
		57	Fig.52 revised.
		58	Fig.54 revised.
			"DATA REQUIRED FOR QzROM WRITING ORDERS" added.
		62	Notes On ROM Code Protect added.
		130	A/D converter characteristics:
			Linearity error, Differential non-linearity error and Absolute accuracy
			→ Parameters and Test conditions revised.
		131	Voltage drop detection circuit characteristics: $VRST^-$, $VRST^+ \rightarrow Test$ conditions revised.
		132	PLSP0020JB-A package added.
1.02	Dec. 22, 2006	2	Block diagram: "Power-on reset circuit" added.
		5, 63	Description (Note 4) about SCK pin revised.
		26	TIMER: Description revised and Structure of Timer 2 in Table 9 revised.
		28	Fig.23: INSTCK (wrong) → INTSNC (correct)
		30	(2) Prescaler: <u>PRS</u> → <u>RPS</u>
			(3) Timer $\underline{3} \rightarrow \text{Timer } \underline{1}$
		43	SERIAL I/O: Table 14: Note revised.
		53	Fig. 46: Notes revised.
		58	Table 23: Changes referring ahead and note 5 added.
		59 to 61	QzROM Writing Mode added.
		63	LIST OF PRECAUTIONS: Mulfunction revised.
		68 to 71	NOTES ON NOISE added.
		77	Description of Port output structure control register FR2 and FR3 revised.
		103	Instruction code of TAL1 revised. Description of TALA revised.
		107	TC1A eliminated.
		117	Detailed description of TEAB revised.
		134	f(Sck): Serial interface external input $\underline{\text{frequency}} \rightarrow$
			Serial interface external input period
		135	Δ f(XIN): Ta = around 25 °C \rightarrow center 25 °C
		137	Figure title revised, "When ceramic resonator is used" deleted.
		139	Note 4: (<u>power</u> current) → (<u>supply</u> current)
		\rightarrow	Pages 80–82, 94, 95, 115, 122–129:
			Description of SNZ0, SNZT1, SNZT2, SNZAD, SNZSI and WRST instructions revised.

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the development is satisfied. The procedure is such as the development of the development of the development of the development of the development of the development of the development of the development of the development of the development of the development of the development of the dev

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510